forked from mlwithtf/mlwithtf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
executable file
·620 lines (482 loc) · 25.1 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import sys
import os
import numpy as np
import tensorflow as tf
import csv
import pickle
import tarfile
import zipfile as z
import threading
from scipy import ndimage
from scipy.misc import imresize, imsave
from six.moves.urllib.request import urlretrieve
MB = 1024 ** 2
def download_hook_function(block, block_size, total_size):
if total_size != -1:
sys.stdout.write('Downloaded: %3.3fMB of %3.3fMB\r' % (float(block * block_size) / float(MB),
float(total_size) / float(MB)))
else:
sys.stdout.write('Downloaded: %3.3fMB of \'unknown size\'\r' % (float(block * block_size) / float(MB)))
sys.stdout.flush()
def download_file(file_url, output_file_dir, expected_size, FORCE=False):
name = file_url.split('/')[-1]
file_output_path = os.path.join(output_file_dir, name)
print('Attempting to download ' + file_url)
print('File output path: ' + file_output_path)
print('Expected size: ' + str(expected_size))
if not os.path.isdir(output_file_dir):
os.makedirs(output_file_dir)
if os.path.isfile(file_output_path) and os.stat(file_output_path).st_size == expected_size and not FORCE:
print('File already downloaded completely!')
return file_output_path
else:
print(' ')
filename, _ = urlretrieve(file_url, file_output_path, download_hook_function)
print(' ')
statinfo = os.stat(filename)
if statinfo.st_size == expected_size:
print('Found and verified', filename)
else:
raise Exception('Could not download ' + filename)
return filename
def extract_file(input_file, output_dir, FORCE=False):
if os.path.isdir(output_dir) and not FORCE:
print('%s already extracted to %s' % (input_file, output_dir))
directories = [x for x in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, x))]
return output_dir + "/" + directories[0]
else:
tar = tarfile.open(input_file)
sys.stdout.flush()
print('Started extracting:\n%s\nto:\n%s' % (input_file, output_dir))
tar.extractall(output_dir)
print('Finished extracting:\n%s\nto:\n%s' % (input_file, output_dir))
tar.close()
directories = [x for x in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, x))]
return output_dir + "/" + directories[0]
def load_class(folder, image_size, pixel_depth):
image_files = os.listdir(folder)
num_of_images = len(image_files)
dataset = np.ndarray(shape=(num_of_images, image_size, image_size),
dtype=np.float32)
image_index = 0
print('Started loading images from: ' + folder)
for index, image in enumerate(image_files):
sys.stdout.write('Loading image %d of %d\r' % (index + 1, num_of_images))
sys.stdout.flush()
image_file = os.path.join(folder, image)
try:
image_data = (ndimage.imread(image_file).astype(float) -
pixel_depth / 2) / pixel_depth
if image_data.shape != (image_size, image_size):
raise Exception('Unexpected image shape: %s' % str(image_data.shape))
dataset[image_index, :, :] = image_data
image_index += 1
except IOError as e:
print('Could not read:', image_file, ':', e, '- it\'s ok, skipping.')
print('Finished loading data from: ' + folder)
return dataset[0:image_index, :, :]
def make_pickles(input_folder, output_dir, image_size, image_depth, FORCE=False):
directories = sorted([x for x in os.listdir(input_folder) if os.path.isdir(os.path.join(input_folder, x))])
pickle_files = [os.path.join(output_dir, x + '.pickle') for x in directories]
for index, pickle_file in enumerate(pickle_files):
if os.path.isfile(pickle_file) and not FORCE:
print('\tPickle already exists: %s' % (pickle_file))
else:
folder_path = os.path.join(input_folder, directories[index])
print('\tLoading from folder: ' + folder_path)
data = load_class(folder_path, image_size, image_depth)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
print('\tStarted pickling: ' + directories[index])
try:
with open(pickle_file, 'wb') as f:
pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)
except Exception as e:
print('Unable to save data to', pickle_file, ':', e)
print('Finished pickling: ' + directories[index])
return pickle_files
def randomize(dataset, labels):
permutation = np.random.permutation(labels.shape[0])
shuffled_dataset = dataset[permutation, :, :]
shuffled_labels = labels[permutation]
return shuffled_dataset, shuffled_labels
def make_arrays(nb_rows, img_size):
if nb_rows:
dataset = np.ndarray((nb_rows, img_size, img_size), dtype=np.float32)
labels = np.ndarray(nb_rows, dtype=np.int32)
else:
dataset, labels = None, None
return dataset, labels
def reformat(data, image_size, num_of_channels, num_of_classes, flatten=True):
if flatten:
data.train_dataset = data.train_dataset.reshape((-1, image_size * image_size * num_of_channels)).astype(np.float32)
data.valid_dataset = data.valid_dataset.reshape((-1, image_size * image_size * num_of_channels)).astype(np.float32)
data.test_dataset = data.test_dataset.reshape((-1, image_size * image_size * num_of_channels)).astype(np.float32)
else:
data.train_dataset = data.train_dataset.reshape((-1, image_size, image_size, num_of_channels)).astype(np.float32)
data.valid_dataset = data.valid_dataset.reshape((-1, image_size, image_size, num_of_channels)).astype(np.float32)
data.test_dataset = data.test_dataset.reshape((-1, image_size, image_size, num_of_channels)).astype(np.float32)
# Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]
data.train_labels = (np.arange(num_of_classes) == data.train_labels[:, None]).astype(np.float32)
data.valid_labels = (np.arange(num_of_classes) == data.valid_labels[:, None]).astype(np.float32)
data.test_labels = (np.arange(num_of_classes) == data.test_labels[:, None]).astype(np.float32)
return data
def merge_datasets(pickle_files, image_size, train_size, valid_size=0):
num_classes = len(pickle_files)
valid_dataset, valid_labels = make_arrays(valid_size, image_size)
train_dataset, train_labels = make_arrays(train_size, image_size)
vsize_per_class = valid_size // num_classes
tsize_per_class = train_size // num_classes
start_v, start_t = 0, 0
end_v, end_t = vsize_per_class, tsize_per_class
end_l = vsize_per_class + tsize_per_class
for label, pickle_file in enumerate(pickle_files):
try:
with open(pickle_file, 'rb') as f:
letter_set = pickle.load(f)
# let's shuffle the letters to have random validation and training set
np.random.shuffle(letter_set)
if valid_dataset is not None:
valid_letter = letter_set[:vsize_per_class, :, :]
valid_dataset[start_v:end_v, :, :] = valid_letter
valid_labels[start_v:end_v] = label
start_v += vsize_per_class
end_v += vsize_per_class
train_letter = letter_set[vsize_per_class:end_l, :, :]
train_dataset[start_t:end_t, :, :] = train_letter
train_labels[start_t:end_t] = label
start_t += tsize_per_class
end_t += tsize_per_class
except Exception as e:
print('Unable to process data from', pickle_file, ':', e)
raise
return valid_dataset, valid_labels, train_dataset, train_labels
def pickle_whole(train_pickle_files, test_pickle_files, image_size,
train_size, valid_size, test_size, output_file_path, FORCE=False):
if os.path.isfile(output_file_path) and not FORCE:
print('Pickle file: %s already exist' % (output_file_path))
with open(output_file_path, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
return train_dataset, train_labels, valid_dataset, valid_labels, test_dataset, test_labels
else:
print('Merging train, valid data')
valid_dataset, valid_labels, train_dataset, train_labels = merge_datasets(
train_pickle_files, image_size, train_size, valid_size)
print('Merging test data')
_, _, test_dataset, test_labels = merge_datasets(test_pickle_files, image_size, test_size)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
train_dataset, train_labels = randomize(train_dataset, train_labels)
test_dataset, test_labels = randomize(test_dataset, test_labels)
valid_dataset, valid_labels = randomize(valid_dataset, valid_labels)
try:
f = open(output_file_path, 'wb')
save = {
'train_dataset': train_dataset,
'train_labels': train_labels,
'valid_dataset': valid_dataset,
'valid_labels': valid_labels,
'test_dataset': test_dataset,
'test_labels': test_labels,
}
pickle.dump(save, f, pickle.HIGHEST_PROTOCOL)
f.close()
except Exception as e:
print('Unable to save data to', output_file_path, ':', e)
raise
statinfo = os.stat(output_file_path)
print('Compressed pickle size:', statinfo.st_size)
return train_dataset, train_labels, valid_dataset, valid_labels, test_dataset, test_labels
def load_cifar_10_pickle(pickle_file, image_depth):
fo = open(pickle_file, 'rb')
dict = pickle.load(fo)
fo.close()
return ((dict['data'].astype(float) - image_depth / 2) / (image_depth)), dict['labels']
def load_cifar_10_from_pickles(train_pickle_files, test_pickle_files, pickle_batch_size, image_size, image_depth,
num_of_channels):
all_train_data = np.ndarray(shape=(pickle_batch_size * len(train_pickle_files),
image_size * image_size * num_of_channels),
dtype=np.float32)
all_train_labels = np.ndarray(shape=pickle_batch_size * len(train_pickle_files), dtype=object)
all_test_data = np.ndarray(shape=(pickle_batch_size * len(test_pickle_files),
image_size * image_size * num_of_channels),
dtype=np.float32)
all_test_labels = np.ndarray(shape=pickle_batch_size * len(test_pickle_files), dtype=object)
print('Started loading training data')
for index, train_pickle_file in enumerate(train_pickle_files):
all_train_data[index * pickle_batch_size: (index + 1) * pickle_batch_size, :], \
all_train_labels[index * pickle_batch_size: (index + 1) * pickle_batch_size] = \
load_cifar_10_pickle(train_pickle_file, image_depth)
print('Finished loading training data\n')
print('Started loading testing data')
for index, test_pickle_file in enumerate(test_pickle_files):
all_test_data[index * pickle_batch_size: (index + 1) * pickle_batch_size, :], \
all_test_labels[index * pickle_batch_size: (index + 1) * pickle_batch_size] = \
load_cifar_10_pickle(test_pickle_file, image_depth)
print('Finished loading testing data')
return all_train_data, all_train_labels, all_test_data, all_test_labels
def pickle_cifar_10(all_train_data, all_train_labels, all_test_data, all_test_labels,
train_size, valid_size, test_size, output_file_path, FORCE=False):
if os.path.isfile(output_file_path) and not FORCE:
print('\tPickle file already exists: %s' % output_file_path)
with open(output_file_path, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
return train_dataset, train_labels, valid_dataset, valid_labels, test_dataset, test_labels
else:
train_dataset = all_train_data[0:train_size]
train_labels = all_train_labels[0:train_size]
valid_dataset = all_train_data[train_size:train_size + valid_size]
valid_labels = all_train_labels[train_size:train_size + valid_size]
test_dataset = all_test_data[0:test_size]
test_labels = all_test_labels[0:test_size]
try:
f = open(output_file_path, 'wb')
save = {
'train_dataset': train_dataset,
'train_labels': train_labels,
'valid_dataset': valid_dataset,
'valid_labels': valid_labels,
'test_dataset': test_dataset,
'test_labels': test_labels,
}
pickle.dump(save, f, pickle.HIGHEST_PROTOCOL)
f.close()
except Exception as e:
print('Unable to save data to', output_file_path, ':', e)
raise
statinfo = os.stat(output_file_path)
print('Compressed pickle size:', statinfo.st_size)
return train_dataset, train_labels, valid_dataset, valid_labels, test_dataset, test_labels
def check_file_status(file_path, expected_size, error_message, close=True):
file_size = os.stat(file_path).st_size
if file_size == expected_size:
print("File status ({}): OK".format(file_path))
return True
else:
print("File status ({}): CORRUPTED. Expected size: {}, found: {}".format(file_path, expected_size, file_size))
print(error_message)
if close:
exit(-1)
else:
return False
def check_folder_status(folder_path, expected_num_of_files, success_message, error_message, close=True):
num_of_files_found = 0
for root, dirs, files in os.walk(folder_path):
num_of_files_found += len(files)
if num_of_files_found == expected_num_of_files:
print(success_message)
return True
else:
print(error_message)
if close:
exit(-1)
else:
return False
def crop_black_borders(image, threshold=0):
"""Crops any edges below or equal to threshold
Crops blank image to 1x1.
Returns cropped image.
"""
if len(image.shape) == 3:
flatImage = np.max(image, 2)
else:
flatImage = image
assert len(flatImage.shape) == 2
rows = np.where(np.max(flatImage, 0) > threshold)[0]
if rows.size:
cols = np.where(np.max(flatImage, 1) > threshold)[0]
image = image[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1]
else:
image = image[:1, :1]
return image
def prepare_not_mnist_dataset(root_dir="."):
print('Started preparing notMNIST dataset')
image_size = 28
image_depth = 255
training_set_url = 'http://yaroslavvb.com/upload/notMNIST/notMNIST_large.tar.gz'
test_set_url = 'http://yaroslavvb.com/upload/notMNIST/notMNIST_small.tar.gz'
train_download_size = 247336696
test_download_size = 8458043
train_size = 200000
valid_size = 10000
test_size = 10000
num_of_classes = 10
num_of_channels = 1
dataset_path = os.path.realpath(os.path.join(root_dir, "datasets", "notMNIST"))
train_path = os.path.join(dataset_path, "train")
test_path = os.path.join(dataset_path, "test")
train_file_path = download_file(training_set_url, dataset_path, train_download_size)
test_file_path = download_file(test_set_url, dataset_path, test_download_size)
train_extracted_folder = extract_file(train_file_path, train_path)
test_extracted_folder = extract_file(test_file_path, test_path)
print('Started loading training data')
train_pickle_files = make_pickles(train_extracted_folder, train_path, image_size, image_depth)
print('Finished loading training data\n')
print('Started loading testing data')
test_pickle_files = make_pickles(test_extracted_folder, test_path, image_size, image_depth)
print('Finished loading testing data')
print('Started pickling final dataset')
train_dataset, train_labels, valid_dataset, valid_labels, \
test_dataset, test_labels = pickle_whole(train_pickle_files, test_pickle_files, image_size, train_size, valid_size,
test_size, os.path.join(dataset_path, 'notMNIST.pickle'))
print('Finished pickling final dataset')
print('Finished preparing notMNIST dataset')
def not_mnist(): pass
not_mnist.train_dataset = train_dataset
not_mnist.train_labels = train_labels
not_mnist.valid_dataset = valid_dataset
not_mnist.valid_labels = valid_labels
not_mnist.test_dataset = test_dataset
not_mnist.test_labels = test_labels
return not_mnist, image_size, num_of_classes, num_of_channels
def prepare_cifar_10_dataset():
print('Started preparing CIFAR-10 dataset')
image_size = 32
image_depth = 255
cifar_dataset_url = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
dataset_size = 170498071
train_size = 45000
valid_size = 5000
test_size = 10000
num_of_classes = 10
num_of_channels = 3
pickle_batch_size = 10000
dataset_path = download_file(cifar_dataset_url,
os.path.realpath('../../datasets/CIFAR-10'), dataset_size)
dataset_extracted_folder = extract_file(dataset_path, os.path.realpath('../../datasets/CIFAR-10/data'))
train_pickle_files = ['data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4',
'data_batch_5']
train_pickle_files = [dataset_extracted_folder + '/' + x for x in train_pickle_files]
test_pickle_files = ['test_batch']
test_pickle_files = [dataset_extracted_folder + '/' + x for x in test_pickle_files]
print('Started loading CIFAR-10 dataset')
all_train_data, all_train_labels, all_test_data, all_test_labels = load_cifar_10_from_pickles(train_pickle_files,
test_pickle_files,
pickle_batch_size,
image_size,
image_depth,
num_of_channels)
print('Finished loading CIFAR-10 dataset')
print('Started pickling final dataset')
train_dataset, train_labels, valid_dataset, valid_labels, \
test_dataset, test_labels = pickle_cifar_10(all_train_data, all_train_labels, all_test_data, all_test_labels,
train_size, valid_size, test_size,
os.path.realpath('../../datasets/CIFAR-10/CIFAR-10.pickle'), True)
print('Finished pickling final dataset')
print('Finished preparing CIFAR-10 dataset')
def cifar_10(): pass
cifar_10.train_dataset = train_dataset
cifar_10.train_labels = train_labels
cifar_10.valid_dataset = valid_dataset
cifar_10.valid_labels = valid_labels
cifar_10.test_dataset = test_dataset
cifar_10.test_labels = test_labels
return cifar_10, image_size, num_of_classes, num_of_channels
def prepare_dr_dataset(dataset_dir):
num_of_processing_threads = 16
dr_dataset_base_path = os.path.realpath(dataset_dir)
unique_labels_file_path = os.path.join(dr_dataset_base_path, "unique_labels_file.txt")
processed_images_folder = os.path.join(dr_dataset_base_path, "processed_images")
num_of_processed_images = 35126
train_processed_images_folder = os.path.join(processed_images_folder, "train")
validation_processed_images_folder = os.path.join(processed_images_folder, "validation")
num_of_training_images = 30000
raw_images_folder = os.path.join(dr_dataset_base_path, "train")
train_labels_csv_path = os.path.join(dr_dataset_base_path, "trainLabels.csv")
def process_images_batch(thread_index, files, labels, subset):
num_of_files = len(files)
for index, file_and_label in enumerate(zip(files, labels)):
file = file_and_label[0] + '.jpeg'
label = file_and_label[1]
input_file = os.path.join(raw_images_folder, file)
output_file = os.path.join(processed_images_folder, subset, str(label), file)
image = ndimage.imread(input_file)
cropped_image = crop_black_borders(image, 10)
resized_cropped_image = imresize(cropped_image, (299, 299, 3), interp="bicubic")
imsave(output_file, resized_cropped_image)
if index % 10 == 0:
print("(Thread {}): Files processed {} out of {}".format(thread_index, index, num_of_files))
def process_images(files, labels, subset):
# Break all images into batches with a [ranges[i][0], ranges[i][1]].
spacing = np.linspace(0, len(files), num_of_processing_threads + 1).astype(np.int)
ranges = []
for i in range(len(spacing) - 1):
ranges.append([spacing[i], spacing[i + 1]])
# Create a mechanism for monitoring when all threads are finished.
coord = tf.train.Coordinator()
threads = []
for thread_index in range(len(ranges)):
args = (thread_index, files[ranges[thread_index][0]:ranges[thread_index][1]],
labels[ranges[thread_index][0]:ranges[thread_index][1]],
subset)
t = threading.Thread(target=process_images_batch, args=args)
t.start()
threads.append(t)
# Wait for all the threads to terminate.
coord.join(threads)
def process_training_and_validation_images():
train_files = []
train_labels = []
validation_files = []
validation_labels = []
with open(train_labels_csv_path) as csvfile:
reader = csv.DictReader(csvfile)
for index, row in enumerate(reader):
if index < num_of_training_images:
train_files.extend([row['image'].strip()])
train_labels.extend([int(row['level'].strip())])
else:
validation_files.extend([row['image'].strip()])
validation_labels.extend([int(row['level'].strip())])
if not os.path.isdir(processed_images_folder):
os.mkdir(processed_images_folder)
if not os.path.isdir(train_processed_images_folder):
os.mkdir(train_processed_images_folder)
if not os.path.isdir(validation_processed_images_folder):
os.mkdir(validation_processed_images_folder)
for directory_index in range(5):
train_directory_path = os.path.join(train_processed_images_folder, str(directory_index))
valid_directory_path = os.path.join(validation_processed_images_folder, str(directory_index))
if not os.path.isdir(train_directory_path):
os.mkdir(train_directory_path)
if not os.path.isdir(valid_directory_path):
os.mkdir(valid_directory_path)
print("Processing training files...")
process_images(train_files, train_labels, "train")
print("Done!")
print("Processing validation files...")
process_images(validation_files, validation_labels, "validation")
print("Done!")
print("Making unique labels file...")
with open(unique_labels_file_path, 'w') as unique_labels_file:
unique_labels = ""
for index in range(5):
unique_labels += "{}\n".format(index)
unique_labels_file.write(unique_labels)
status = check_folder_status(processed_images_folder, num_of_processed_images,
"All processed images are present in place",
"Couldn't complete the image processing of training and validation files.")
return status
process_training_and_validation_images()
return