-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsearch.py
274 lines (244 loc) · 11.2 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import pdb
import argparse
import yaml
import os
import time
import torch
import torch.nn as nn
import generator
from loss import WeightedDiceLoss
from helper import calc_param_size, print_red
from nas import ShellNet
import sys
from torch.optim import Adam
from adabound import AdaBound
from torch.optim.lr_scheduler import ReduceLROnPlateau
# from tqdm import tqdm
from tqdm.notebook import tqdm
from collections import defaultdict, Counter, OrderedDict
import pickle
import shutil
DEBUG_FLAG = False
class Base:
'''
Base class for Searching and Training
jupyter: if True, run in Jupyter Notebook, otherwise in shell.
for_search: if True, for search, otherwise for training. Notice patch_search could be different from patch_training.
for_final_training: if False, for k-fold-cross-val, otherwise final training will use the whole training dataset.
'''
def __init__(self, jupyter=True, for_search=True, for_final_training=False):
self.jupyter = jupyter
self.for_search = for_search
self.for_final_training = for_final_training
self._init_config()
self._init_log()
self._init_device()
self._init_dataset()
def _init_log(self):
try:
os.mkdir(self.config['search']['log_path'])
except FileExistsError:
pass
def _init_config(self):
parser = argparse.ArgumentParser()
parser.add_argument('--config',type=str,default='config.yml',
help='Configuration file to use')
if self.jupyter: # for jupyter notebook
self.args = parser.parse_args(args=[])
else: # for shell
self.args = parser.parse_args()
with open(self.args.config) as f:
self.config = yaml.load(f, Loader=yaml.FullLoader)
print('data[patch_overlap] =', self.config['data']['patch_overlap'])
print('search[patch_shape] =', self.config['search']['patch_shape'])
print('train[patch_shape] =', self.config['train']['patch_shape'])
print('train[epochs] =', self.config['train']['epochs'])
print('data[inclusive_label] =', self.config['data']['inclusive_label'])
print('data[both_ps] =', self.config['data']['both_ps'])
return
def _init_device(self):
if self.config['search']['gpu'] and torch.cuda.is_available() :
self.device = torch.device('cuda')
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
else:
print_red('No gpu devices available!, we will use cpu')
self.device = torch.device('cpu')
return
def _init_dataset(self):
dataset = generator.Dataset(for_search=self.for_search, for_final_training=self.for_final_training)
self.train_generator = dataset.train_generator
self.val_generator = dataset.val_generator
return
class Searching(Base):
'''
Searching process
jupyter: if True, run in Jupyter Notebook, otherwise in shell.
new_lr: if True, check_resume() will not load the saved states of optimizers and lr_schedulers.
'''
def __init__(self, jupyter=True, new_lr=False):
super().__init__(jupyter=jupyter)
self._init_model()
self.check_resume(new_lr=new_lr)
def _init_model(self):
self.model = ShellNet(in_channels=len(self.config['data']['all_mods']),
init_n_kernels=self.config['search']['init_n_kernels'],
out_channels=len(self.config['data']['labels']),
depth=self.config['search']['depth'],
n_nodes=self.config['search']['n_nodes'],
normal_w_share=self.config['search']['normal_w_share'],
channel_change=self.config['search']['channel_change']).to(self.device)
print('Param size = {:.3f} MB'.format(calc_param_size(self.model)))
self.loss = WeightedDiceLoss().to(self.device)
self.optim_shell = Adam(self.model.alphas()) # lr=3e-4
self.optim_kernel = Adam(self.model.kernel.parameters())
self.shell_scheduler = ReduceLROnPlateau(self.optim_shell,verbose=True,factor=0.5)
self.kernel_scheduler = ReduceLROnPlateau(self.optim_kernel,verbose=True,factor=0.5)
def check_resume(self, new_lr=False):
self.last_save = self.config['search']['last_save']
self.best_shot = self.config['search']['best_shot']
if os.path.exists(self.last_save):
state_dicts = torch.load(self.last_save, map_location=self.device)
self.epoch = state_dicts['epoch'] + 1
self.geno_count = state_dicts['geno_count']
self.history = state_dicts['history']
self.model.load_state_dict(state_dicts['model_param'])
if not new_lr:
self.optim_shell.load_state_dict(state_dicts['optim_shell'])
self.optim_kernel.load_state_dict(state_dicts['optim_kernel'])
self.shell_scheduler.load_state_dict(state_dicts['shell_scheduler'])
self.kernel_scheduler.load_state_dict(state_dicts['kernel_scheduler'])
self.best_val_loss = state_dicts['best_loss']
else:
self.epoch = 0
self.geno_count = Counter()
self.history = defaultdict(list)
self.best_val_loss = 1.0
def search(self):
'''
Return the best genotype in tuple:
(best_gene: str(Genotype), geno_count: int)
'''
# pdb.set_trace()
geno_file = self.config['search']['geno_file']
if os.path.exists(geno_file):
print('{} exists.'.format(geno_file))
with open(geno_file, 'rb') as f:
return pickle.load(f)
best_gene = None
best_geno_count = self.config['search']['best_geno_count']
n_epochs = self.config['search']['epochs']
for epoch in range(n_epochs):
is_best = False
gene = self.model.get_gene()
self.geno_count[str(gene)] += 1
if self.geno_count[str(gene)] >= best_geno_count:
print('>= best_geno_count: ({})'.format(best_geno_count))
best_gene = (str(gene), best_geno_count)
break
shell_loss, kernel_loss = self.train()
val_loss = self.validate()
self.shell_scheduler.step(shell_loss)
self.kernel_scheduler.step(val_loss)
self.history['shell_loss'].append(shell_loss)
self.history['kernel_loss'].append(kernel_loss)
self.history['val_loss'].append(val_loss)
if val_loss < self.best_val_loss:
is_best = True
self.best_val_loss = val_loss
# Save what the current epoch ends up with.
state_dicts = {
'epoch': self.epoch,
'geno_count': self.geno_count,
'history': self.history,
'model_param': self.model.state_dict(),
'optim_shell': self.optim_shell.state_dict(),
'optim_kernel': self.optim_kernel.state_dict(),
'kernel_scheduler': self.kernel_scheduler.state_dict(),
'shell_scheduler': self.kernel_scheduler.state_dict(),
'best_loss': self.best_val_loss
}
torch.save(state_dicts, self.last_save)
if is_best:
shutil.copy(self.last_save, self.best_shot)
self.epoch += 1
if self.epoch > n_epochs:
break
if DEBUG_FLAG and epoch >= 1:
break
if best_gene is None:
gene = str(self.model.get_gene())
self.geno_count[gene] += 1
best_gene = (gene, self.geno_count[gene])
with open(geno_file, 'wb') as f:
pickle.dump(best_gene, f)
return best_gene
def train(self):
'''
Searching | Training process
To do optim_shell.step() and optim_kernel.step() in turn.
'''
self.model.train()
train_epoch = self.train_generator.epoch()
val_epoch = self.val_generator.epoch()
n_steps = self.train_generator.steps_per_epoch
sum_loss = 0
sum_val_loss = 0
with tqdm(train_epoch, total = n_steps,
desc = 'Searching | Epoch {} | Training'.format(self.epoch)) as pbar:
for step, (x, y_truth) in enumerate(pbar):
x = torch.as_tensor(x, device=self.device, dtype=torch.float)
y_truth = torch.as_tensor(y_truth, device=self.device, dtype=torch.float)
try:
val_x, val_y_truth = next(val_epoch)
except StopIteration:
val_epoch = self.val_generator.epoch()
val_x, val_y_truth = next(val_epoch)
val_x = torch.as_tensor(val_x, device=self.device, dtype=torch.float)
val_y_truth = torch.as_tensor(val_y_truth, device=self.device, dtype=torch.float)
# optim_shell
self.optim_shell.zero_grad()
val_y_pred = self.model(val_x)
val_loss = self.loss(val_y_pred, val_y_truth)
sum_val_loss += val_loss.item()
val_loss.backward()
self.optim_shell.step()
# optim_kernel
self.optim_kernel.zero_grad()
y_pred = self.model(x)
loss = self.loss(y_pred, y_truth)
sum_loss += loss.item()
loss.backward()
# nn.utils.clip_grad_norm_(self.model.kernel.parameters(),
# self.config['search']['grad_clip'])
self.optim_kernel.step()
# postfix for progress bar
postfix = OrderedDict()
postfix['Loss(optim_shell)'] = round(sum_val_loss/(step+1), 3)
postfix['Loss(optim_kernel)'] = round(sum_loss/(step+1), 3)
pbar.set_postfix(postfix)
if DEBUG_FLAG and step > 1:
break
return round(sum_val_loss/n_steps, 3), round(sum_loss/n_steps, 3)
def validate(self):
'''
Searching | Validation process
'''
self.model.eval()
n_steps = self.val_generator.steps_per_epoch
sum_loss = 0
with tqdm(self.val_generator.epoch(), total = n_steps,
desc = 'Searching | Epoch {} | Val'.format(self.epoch)) as pbar:
for step, (x, y_truth) in enumerate(pbar):
x = torch.as_tensor(x, device=self.device, dtype=torch.float)
y_truth = torch.as_tensor(y_truth, device=self.device, dtype=torch.float)
y_pred = self.model(x)
loss = self.loss(y_pred, y_truth)
sum_loss += loss.item()
pbar.set_postfix(Loss=round(sum_loss/(step+1), 3))
if DEBUG_FLAG and step > 1:
break
return round(sum_loss/n_steps, 3)
if __name__ == '__main__':
searching = Searching(jupyter = False)
gene = searching.search()