-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathhelper.py
33 lines (27 loc) · 888 Bytes
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
from torch.nn.functional import interpolate
import pdb
def minmax_normalize(img_npy):
'''
img_npy: ndarray
'''
min_value = np.min(img_npy)
max_value = np.max(img_npy)
return (img_npy - min_value)/(max_value - min_value)
def calc_param_size(model):
'''
Show the memory cost of model.parameters, in MB.
'''
return np.sum(np.prod(v.size()) for v in model.parameters())*4e-6
def dim_assert(t_list):
'''
To make sure that all the tensors in t_list has the same dims.
'''
dims = tuple(np.max([t.size() for t in t_list], axis=0)[-3:])
for i in range(len(t_list)):
if tuple(t_list[i].shape[-3:]) != dims:
print_red('inconsistent dim: i')
t_list[i] = interpolate(t_list[i], dims)
return t_list
def print_red(something):
print("\033[1;31m{}\033[0m".format(something))