forked from adnappp/Sfm-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
revise_v2.py
326 lines (267 loc) · 11.8 KB
/
revise_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
'''
原理可参考https://zhuanlan.zhihu.com/p/30033898
'''
import os
import cv2
import sys
import math
import config
import collections
import numpy as np
import matplotlib.pyplot as plt
from mayavi import mlab
from scipy.linalg import lstsq
from mpl_toolkits.mplot3d import Axes3D
from scipy.optimize import least_squares
##########################
#两张图之间的特征提取及匹配
##########################
def extract_features(image_names):
sift = cv2.xfeatures2d.SIFT_create(0, 3, 0.04, 10)
key_points_for_all = []
descriptor_for_all = []
colors_for_all = []
for image_name in image_names:
image = cv2.imread(image_name)
if image is None:
continue
key_points, descriptor = sift.detectAndCompute(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY), None)
if len(key_points) <= 10:
continue
key_points_for_all.append(key_points)
descriptor_for_all.append(descriptor)
colors = np.zeros((len(key_points), 3))
for i, key_point in enumerate(key_points):
p = key_point.pt
colors[i] = image[int(p[1])][int(p[0])]
colors_for_all.append(colors)
return np.array(key_points_for_all), np.array(descriptor_for_all), np.array(colors_for_all)
def match_features(query, train):
bf = cv2.BFMatcher(cv2.NORM_L2)
knn_matches = bf.knnMatch(query, train, k=2)
matches = []
#Apply Lowe's SIFT matching ratio test(MRT),值得一提的是,这里的匹配没有
#标准形式,可以根据需求进行改动。
for m, n in knn_matches:
if m.distance < config.MRT * n.distance:
matches.append(m)
return np.array(matches)
def match_all_features(descriptor_for_all):
matches_for_all = []
for i in range(len(descriptor_for_all) - 1):
matches = match_features(descriptor_for_all[i], descriptor_for_all[i + 1])
matches_for_all.append(matches)
return np.array(matches_for_all)
######################
#寻找图与图之间的对应相机旋转角度以及相机平移
######################
def find_transform(K, p1, p2):
focal_length = 0.5 * (K[0, 0] + K[1, 1])
principle_point = (K[0, 2], K[1, 2])
E,mask = cv2.findEssentialMat(p1, p2, focal_length, principle_point, cv2.RANSAC, 0.999, 1.0)
cameraMatrix = np.array([[focal_length, 0, principle_point[0]], [0, focal_length, principle_point[1]], [0, 0, 1]])
pass_count, R, T, mask = cv2.recoverPose(E, p1, p2, cameraMatrix, mask)
return R, T, mask
def get_matched_points(p1, p2, matches):
src_pts = np.asarray([p1[m.queryIdx].pt for m in matches])
dst_pts = np.asarray([p2[m.trainIdx].pt for m in matches])
return src_pts, dst_pts
def get_matched_colors(c1, c2, matches):
color_src_pts = np.asarray([c1[m.queryIdx] for m in matches])
color_dst_pts = np.asarray([c2[m.trainIdx] for m in matches])
return color_src_pts, color_dst_pts
#选择重合的点
def maskout_points(p1, mask):
p1_copy = []
for i in range(len(mask)):
if mask[i] > 0:
p1_copy.append(p1[i])
return np.array(p1_copy)
def init_structure(K, key_points_for_all, colors_for_all, matches_for_all):
p1, p2 = get_matched_points(key_points_for_all[0], key_points_for_all[1], matches_for_all[0])
c1, c2 = get_matched_colors(colors_for_all[0], colors_for_all[1], matches_for_all[0])
if find_transform(K, p1, p2):
R,T,mask = find_transform(K, p1, p2)
else:
R,T,mask = np.array([]), np.array([]), np.array([])
p1 = maskout_points(p1, mask)
p2 = maskout_points(p2, mask)
colors = maskout_points(c1, mask)
#设置第一个相机的变换矩阵,即作为剩下摄像机矩阵变换的基准。
R0 = np.eye(3, 3)
T0 = np.zeros((3, 1))
structure = reconstruct(K, R0, T0, R, T, p1, p2)
rotations = [R0, R]
motions = [T0, T]
correspond_struct_idx = []
for key_p in key_points_for_all:
correspond_struct_idx.append(np.ones(len(key_p)) *- 1)
correspond_struct_idx = np.array(correspond_struct_idx)
idx = 0
matches = matches_for_all[0]
for i, match in enumerate(matches):
if mask[i] == 0:
continue
correspond_struct_idx[0][int(match.queryIdx)] = idx
correspond_struct_idx[1][int(match.trainIdx)] = idx
idx += 1
return structure, correspond_struct_idx, colors, rotations, motions
#############
#三维重建
#############
def reconstruct(K, R1, T1, R2, T2, p1, p2):
proj1 = np.zeros((3, 4))
proj2 = np.zeros((3, 4))
proj1[0:3, 0:3] = np.float32(R1)
proj1[:, 3] = np.float32(T1.T)
proj2[0:3, 0:3] = np.float32(R2)
proj2[:, 3] = np.float32(T2.T)
fk = np.float32(K)
proj1 = np.dot(fk, proj1)
proj2 = np.dot(fk, proj2)
s = cv2.triangulatePoints(proj1, proj2, p1.T, p2.T)
structure = []
for i in range(len(s[0])):
col = s[:, i]
col /= col[3]
structure.append([col[0], col[1], col[2]])
return np.array(structure)
###########################
#将已作出的点云进行融合
###########################
def fusion_structure(matches, struct_indices, next_struct_indices, structure, next_structure, colors, next_colors):
for i,match in enumerate(matches):
query_idx = match.queryIdx
train_idx = match.trainIdx
struct_idx = struct_indices[query_idx]
if struct_idx >= 0:
next_struct_indices[train_idx] = struct_idx
continue
structure = np.append(structure, [next_structure[i]], axis = 0)
colors = np.append(colors, [next_colors[i]], axis = 0)
struct_indices[query_idx] = next_struct_indices[train_idx] = len(structure) - 1
return struct_indices, next_struct_indices, structure, colors
#制作图像点以及空间点
def get_objpoints_and_imgpoints(matches, struct_indices, structure, key_points):
object_points = []
image_points = []
for match in matches:
query_idx = match.queryIdx
train_idx = match.trainIdx
struct_idx = struct_indices[query_idx]
if struct_idx < 0:
continue
object_points.append(structure[int(struct_idx)])
image_points.append(key_points[train_idx].pt)
return np.array(object_points), np.array(image_points)
########################
#bundle adjustment
########################
# 这部分中,函数get_3dpos是原方法中对某些点的调整,而get_3dpos2是根据笔者的需求进行的修正,即将原本需要修正的点全部删除。
# bundle adjustment请参见https://www.cnblogs.com/zealousness/archive/2018/12/21/10156733.html
def get_3dpos(pos, ob, r, t, K):
dtype = np.float32
def F(x):
p,J = cv2.projectPoints(x.reshape(1, 1, 3), r, t, K, np.array([]))
p = p.reshape(2)
e = ob - p
err = e
return err
res = least_squares(F, pos)
return res.x
def get_3dpos_v1(pos,ob,r,t,K):
p,J = cv2.projectPoints(pos.reshape(1, 1, 3), r, t, K, np.array([]))
p = p.reshape(2)
e = ob - p
if abs(e[0]) > config.x or abs(e[1]) > config.y:
return None
return pos
def bundle_adjustment(rotations, motions, K, correspond_struct_idx, key_points_for_all, structure):
for i in range(len(rotations)):
r, _ = cv2.Rodrigues(rotations[i])
rotations[i] = r
for i in range(len(correspond_struct_idx)):
point3d_ids = correspond_struct_idx[i]
key_points = key_points_for_all[i]
r = rotations[i]
t = motions[i]
for j in range(len(point3d_ids)):
point3d_id = int(point3d_ids[j])
if point3d_id < 0:
continue
new_point = get_3dpos_v1(structure[point3d_id], key_points[j].pt, r, t, K)
structure[point3d_id] = new_point
return structure
#######################
#作图
#######################
# 这里有两种方式作图,其中一个是matplotlib做的,但是第二个是基于mayavi做的,效果上看,fig_v1效果更好。fig_v2是mayavi加颜色的效果。
def fig(structure, colors):
colors /= 255
for i in range(len(colors)):
colors[i, :] = colors[i, :][[2, 1, 0]]
fig = plt.figure()
fig.suptitle('3d')
ax = fig.gca(projection = '3d')
for i in range(len(structure)):
ax.scatter(structure[i, 0], structure[i, 1], structure[i, 2], color = colors[i, :], s = 5)
ax.set_xlabel('x axis')
ax.set_ylabel('y axis')
ax.set_zlabel('z axis')
ax.view_init(elev = 135, azim = 90)
plt.show()
def fig_v1(structure):
mlab.points3d(structure[:, 0], structure[:, 1], structure[:, 2], mode = 'point', name = 'dinosaur')
mlab.show()
def fig_v2(structure, colors):
for i in range(len(structure)):
mlab.points3d(structure[i][0], structure[i][1], structure[i][2],
mode = 'point', name = 'dinosaur', color = colors[i])
mlab.show()
def main():
imgdir = config.image_dir
img_names = os.listdir(imgdir)
img_names = sorted(img_names)
for i in range(len(img_names)):
img_names[i] = imgdir + img_names[i]
# img_names = img_names[0:10]
# K是摄像头的参数矩阵
K = config.K
key_points_for_all, descriptor_for_all, colors_for_all = extract_features(img_names)
matches_for_all = match_all_features(descriptor_for_all)
structure, correspond_struct_idx, colors, rotations, motions = init_structure(K, key_points_for_all, colors_for_all, matches_for_all)
for i in range(1, len(matches_for_all)):
object_points, image_points = get_objpoints_and_imgpoints(matches_for_all[i], correspond_struct_idx[i], structure, key_points_for_all[i + 1])
#在python的opencv中solvePnPRansac函数的第一个参数长度需要大于7,否则会报错
#这里对小于7的点集做一个重复填充操作,即用点集中的第一个点补满7个
if len(image_points) < 7:
while len(image_points) < 7:
object_points = np.append(object_points, [object_points[0]], axis = 0)
image_points = np.append(image_points, [image_points[0]], axis = 0)
_, r, T, _ = cv2.solvePnPRansac(object_points, image_points, K, np.array([]))
R, _ = cv2.Rodrigues(r)
rotations.append(R)
motions.append(T)
p1, p2 = get_matched_points(key_points_for_all[i], key_points_for_all[i + 1], matches_for_all[i])
c1, c2 = get_matched_colors(colors_for_all[i], colors_for_all[i + 1], matches_for_all[i])
next_structure = reconstruct(K, rotations[i], motions[i], R, T, p1, p2)
correspond_struct_idx[i], correspond_struct_idx[i + 1], structure, colors = fusion_structure(matches_for_all[i],correspond_struct_idx[i],correspond_struct_idx[i+1],structure,next_structure,colors,c1)
structure = bundle_adjustment(rotations, motions, K, correspond_struct_idx, key_points_for_all, structure)
i = 0
# 由于经过bundle_adjustment的structure,会产生一些空的点(实际代表的意思是已被删除)
# 这里删除那些为空的点
while i < len(structure):
if math.isnan(structure[i][0]):
structure = np.delete(structure, i, 0)
colors = np.delete(colors, i, 0)
i -= 1
i += 1
print(len(structure))
print(len(motions))
# np.save('structure.npy', structure)
# np.save('colors.npy', colors)
# fig(structure,colors)
fig_v1(structure)
# fig_v2(structure, colors)
if __name__ == '__main__':
main()