-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy patharguments.py
70 lines (67 loc) · 4.19 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
def get_argument_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default='./data/',
help='path to datasets')
parser.add_argument('--data_name', default='precomp',
help='{coco,f30k}_precomp')
parser.add_argument('--vocab_path', default='./vocab/',
help='Path to saved vocabulary json files.')
parser.add_argument('--margin', default=0.2, type=float,
help='Rank loss margin.')
parser.add_argument('--num_epochs', default=30, type=int,
help='Number of training epochs.')
parser.add_argument('--batch_size', default=128, type=int,
help='Size of a training mini-batch.')
parser.add_argument('--word_dim', default=300, type=int,
help='Dimensionality of the word embedding.')
parser.add_argument('--embed_size', default=1024, type=int,
help='Dimensionality of the joint embedding.')
parser.add_argument('--grad_clip', default=2., type=float,
help='Gradient clipping threshold.')
parser.add_argument('--learning_rate', default=.0002, type=float,
help='Initial learning rate.')
parser.add_argument('--lr_update', default=15, type=int,
help='Number of epochs to update the learning rate.')
parser.add_argument('--optim', default='adam', type=str,
help='the optimizer')
parser.add_argument('--workers', default=10, type=int,
help='Number of data loader workers.')
parser.add_argument('--log_step', default=10, type=int,
help='Number of steps to logger.info and record the log.')
parser.add_argument('--val_step', default=500, type=int,
help='Number of steps to run validation.')
parser.add_argument('--logger_name', default='./runs/runX/log',
help='Path to save Tensorboard log.')
parser.add_argument('--model_name', default='./runs/runX/checkpoint',
help='Path to save the model.')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--max_violation', action='store_true',
help='Use max instead of sum in the rank loss.')
parser.add_argument('--img_dim', default=2048, type=int,
help='Dimensionality of the image embedding.')
parser.add_argument('--no_imgnorm', action='store_true',
help='Do not normalize the image embeddings.')
parser.add_argument('--no_txtnorm', action='store_true',
help='Do not normalize the text embeddings.')
parser.add_argument('--precomp_enc_type', default="basic",
help='basic|backbone')
parser.add_argument('--backbone_path', type=str, default='',
help='path to the pre-trained backbone net')
parser.add_argument('--backbone_source', type=str, default='detector',
help='the source of the backbone model, detector|imagenet')
parser.add_argument('--vse_mean_warmup_epochs', type=int, default=0,
help='The number of warmup epochs using mean vse loss')
parser.add_argument('--reset_start_epoch', action='store_true',
help='Whether restart the start epoch when load weights')
parser.add_argument('--backbone_warmup_epochs', type=int, default=5,
help='The number of epochs for warmup')
parser.add_argument('--embedding_warmup_epochs', type=int, default=2,
help='The number of epochs for warming up the embedding layers')
parser.add_argument('--backbone_lr_factor', default=0.01, type=float,
help='The lr factor for fine-tuning the backbone, it will be multiplied to the lr of '
'the embedding layers')
parser.add_argument('--input_scale_factor', type=float, default=1,
help='The factor for scaling the input image')
return parser