-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTFnet.py
118 lines (91 loc) · 5.85 KB
/
TFnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import keras
import tensorflow as tf
from keras import layers
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D
from keras.layers import Activation, Subtract
from keras.layers import merge, BatchNormalization
from keras.models import Model
from keras import backend as K
from keras.layers.core import Lambda
def CONV2D(x, filter_num, kernel_size, activation='relu', **kwargs):
x = Conv2D(filter_num, kernel_size, padding='same')(x)
x = BatchNormalization(axis=3)(x)
if activation=='relu':
x = Activation('relu', **kwargs)(x)
elif activation=='sigmoid':
x = Activation('sigmoid', **kwargs)(x)
else:
x = Activation('softmax', **kwargs)(x)
return x
def TFnet(shape, classes=1):
inputs = Input(shape)
def interSubtract(x0, x1):
x0 = Subtract()([x0, x1])
x0 = Subtract()([Lambda(lambda x: K.abs(x))(x0), x0]);
return x0
def intraSubtract(x0, filter_num=32):
x1 = Lambda(lambda x: x[:, :, :, 0:filter_num])(x0)
x2 = Lambda(lambda x: x[:, :, :, filter_num: ])(x0)
x0 = interSubtract(x1, x2)
return x0
conv0 = BatchNormalization()(inputs)
conv0 = CONV2D(conv0, 32, (3, 3)); edge1 = intraSubtract(conv0, 16); edge1 = merge([conv0, edge1], mode='concat');
conv1 = CONV2D(edge1, 32, (3, 3)); edge1 = intraSubtract(conv1, 16); edge1 = merge([conv1, edge1], mode='concat');
conv0 = interSubtract(conv0, conv1);
conv1 = merge([edge1, conv0], mode='concat');
conv0 = MaxPooling2D(pool_size=(2, 2))(conv1); # size/2
conv0 = CONV2D(conv0, 64, (3, 3)); edge1 = intraSubtract(conv0, 32); edge1 = merge([conv0, edge1], mode='concat');
conv2 = CONV2D(edge1, 64, (3, 3)); edge1 = intraSubtract(conv2, 32); edge1 = merge([conv2, edge1], mode='concat');
conv0 = interSubtract(conv0, conv2);
conv2 = merge([edge1, conv0], mode='concat');
conv0 = MaxPooling2D(pool_size=(2, 2))(conv2); # size/4
conv0 = CONV2D(conv0, 128, (3, 3)); edge1 = intraSubtract(conv0, 64); edge1 = merge([conv0, edge1], mode='concat');
conv3 = CONV2D(edge1, 128, (3, 3)); edge1 = intraSubtract(conv3, 64); edge1 = merge([conv3, edge1], mode='concat');
conv0 = interSubtract(conv0, conv3);
conv3 = merge([edge1, conv0], mode='concat');
conv0 = MaxPooling2D(pool_size=(2, 2))(conv3); # size/8
conv0 = CONV2D(conv0, 256, (3, 3)); edge1 = intraSubtract(conv0, 128); edge1 = merge([conv0, edge1], mode='concat');
conv4 = CONV2D(edge1, 256, (3, 3)); edge1 = intraSubtract(conv4, 128); edge1 = merge([conv4, edge1], mode='concat');
conv0 = interSubtract(conv0, conv4);
conv4 = merge([edge1, conv0], mode='concat');
conv0 = MaxPooling2D(pool_size=(2, 2))(conv4); # size/16
conv0 = CONV2D(conv0, 512, (3, 3)); edge1 = intraSubtract(conv0, 256); edge1 = merge([conv0, edge1], mode='concat');
conv5 = CONV2D(edge1, 512, (3, 3)); edge1 = intraSubtract(conv5, 256); edge1 = merge([conv5, edge1], mode='concat');
conv0 = interSubtract(conv0, conv5);
conv5 = merge([edge1, conv0], mode='concat');
conv0 = MaxPooling2D(pool_size=(2, 2))(conv5); # size/32
#----------------------------------------------
conv0 = CONV2D(conv0, 1024, (3, 3)); edge1 = intraSubtract(conv0, 512); edge1 = merge([conv0, edge1], mode='concat');
conv6 = CONV2D(edge1, 1024, (3, 3)); edge1 = intraSubtract(conv6, 512); edge1 = merge([conv6, edge1], mode='concat');
conv0 = interSubtract(conv0, conv6);
conv0 = merge([edge1, conv0], mode='concat'); # size/32
#----------------------------------------------
conv0 = merge([UpSampling2D(size=(2, 2))(conv0), conv5], mode='concat') # size/16
conv0 = CONV2D(conv0, 512, (3, 3)); edge1 = intraSubtract(conv0, 256); edge1 = merge([conv0, edge1], mode='concat');
conv5 = CONV2D(edge1, 512, (3, 3)); edge1 = intraSubtract(conv5, 256); edge1 = merge([conv5, edge1], mode='concat');
conv0 = interSubtract(conv0, conv5);
conv0 = merge([edge1, conv0], mode='concat');
conv0 = merge([UpSampling2D(size=(2, 2))(conv0), conv4], mode='concat') # size/8
conv0 = CONV2D(conv0, 256, (3, 3)); edge1 = intraSubtract(conv0, 128); edge1 = merge([conv0, edge1], mode='concat');
conv4 = CONV2D(edge1, 256, (3, 3)); edge1 = intraSubtract(conv4, 128); edge1 = merge([conv4, edge1], mode='concat');
conv0 = interSubtract(conv0, conv4);
conv0 = merge([edge1, conv0], mode='concat');
conv0 = merge([UpSampling2D(size=(2, 2))(conv0), conv3], mode='concat') # size/4
conv0 = CONV2D(conv0, 128, (3, 3)); edge1 = intraSubtract(conv0, 64); edge1 = merge([conv0, edge1], mode='concat');
conv3 = CONV2D(edge1, 128, (3, 3)); edge1 = intraSubtract(conv3, 64); edge1 = merge([conv3, edge1], mode='concat');
conv0 = interSubtract(conv0, conv3);
conv0 = merge([edge1, conv0], mode='concat');
conv0 = merge([UpSampling2D(size=(2, 2))(conv0), conv2], mode='concat') # size/4
conv0 = CONV2D(conv0, 64, (3, 3)); edge1 = intraSubtract(conv0, 32); edge1 = merge([conv0, edge1], mode='concat');
conv2 = CONV2D(edge1, 64, (3, 3)); edge1 = intraSubtract(conv2, 32); edge1 = merge([conv2, edge1], mode='concat');
conv0 = interSubtract(conv0, conv2);
conv0 = merge([edge1, conv0], mode='concat');
conv0 = merge([UpSampling2D(size=(2, 2))(conv0), conv1], mode='concat') # size/2
conv0 = CONV2D(conv0, 32, (3, 3)); edge1 = intraSubtract(conv0, 16); edge1 = merge([conv0, edge1], mode='concat');
conv1 = CONV2D(edge1, 32, (3, 3)); edge1 = intraSubtract(conv1, 16); edge1 = merge([conv1, edge1], mode='concat');
conv0 = interSubtract(conv0, conv1);
conv0 = merge([edge1, conv0], mode='concat');
conv0 = CONV2D(conv0, classes, (1, 1), activation='sigmoid')
model = Model(input=inputs, output=conv0)
model.summary()
return model