forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_pot_gb.f90
217 lines (182 loc) · 9.73 KB
/
test_pot_gb.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
! test_pot_gb.f90
! Pair potential, Gay-Berne
MODULE test_pot_module
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
USE, INTRINSIC :: iso_fortran_env, ONLY : error_unit
IMPLICIT NONE
PRIVATE
! Public routine
PUBLIC :: force
! Public data
INTEGER, PARAMETER, PUBLIC :: n = 2 ! Pair potential
CONTAINS
SUBROUTINE force ( r, e, pot, f, t )
USE maths_module, ONLY : cross_product
IMPLICIT NONE
REAL, DIMENSION(:,:), INTENT(in) :: r, e
REAL, INTENT(out) :: pot
REAL, DIMENSION(:,:), OPTIONAL, INTENT(out) :: f, t
! Parameters of the Gay-Berne potential
!
! The key parameters are
! mu, nu ................ the exponents
! kappa and kappa' ....... the anisotropies
! kappa is the ratio of intermolecular separations
! sigma_e / sigma_s i.e. end-to-end / side-by-side
! kappa' is the ratio of well depths
! epsilon_s / epsilon_e i.e. side-by-side / end-to-end
! The derived parameters are chi and chi'
! chi = (kappa**2 - 1) / (kappa**2+1)
! chi' = (z - 1) / (z + 1)
! where z = (kappa') ** ( 1 / mu )
!
! For convenience kappa' is spelt xappa, chi' is spelt xhi
! We choose units such that sigma_s = 1.0 and epsilon_0 = 1.0
! Two of the following three varieties should be commented out
! Original Gay-Berne-deMiguel potential [J. Chem. Phys, 74, 3316; Mol. Phys. 74, 405 (1991)]
INTEGER, PARAMETER :: mu = 2, nu = 1
REAL, PARAMETER :: kappa = 3.0, xappa = 5.0
!!$ ! Luckhurst-Phippen potential [Liq. Cryst., 8, 451 (1990)]
!!$ INTEGER, PARAMETER :: mu = 1, nu = 2
!!$ REAL, PARAMETER :: kappa = 3.0, xappa = 5.0
!!$ ! Berardi-Zannoni potential [J. Chem. Soc. Faraday Trans., 89, 4069 (1993)]
!!$ INTEGER, PARAMETER :: mu = 1, nu = 3
!!$ REAL, PARAMETER :: kappa = 3.0, xappa = 5.0
REAL, PARAMETER :: chi = (kappa**2 - 1.0) / (kappa**2+1.0)
REAL, PARAMETER :: xhi = (xappa**(1.0/mu) - 1.0) / (xappa**(1.0/mu) + 1.0)
REAL, DIMENSION(3) :: rij, sij, fij, gi, gj
REAL :: rij_mag, rij_sq, ci, cj, cij, cp, cm, prefac
REAL :: cpchi, cmchi, sigma
REAL :: cpxhi, cmxhi, eps1, eps2, epsilon
REAL :: dsig_dci, dsig_dcj, dsig_dcij
REAL :: deps_dci, deps_dcj, deps_dcij
REAL :: dpot_dci, dpot_dcj, dpot_dcij, dpot_drij
REAL :: rho, rho6, rho12, rhoterm, drhoterm, cutterm, dcutterm
REAL, PARAMETER :: r_cut = 4.0 ! Normally would use a larger value of r_cut
REAL, PARAMETER :: tol = 1.e-6
INTEGER, PARAMETER :: i = 1, j = 2 ! Notation to match appendix
! Routine to demonstrate the calculation of forces and torques from the
! Gay-Berne potential, including the spherical cutoff contribution.
! Written for ease of comparison with the text, rather than efficiency!
! Check dimensions to be sure
IF ( ANY ( SHAPE(r) /= [3,n] ) ) THEN
WRITE ( unit=error_unit, fmt='(a,4i15)' ) 'r shape error', SHAPE(r), 3, n
STOP 'Error in test_pot_gb'
END IF
IF ( ANY ( SHAPE(e) /= [3,n] ) ) THEN
WRITE ( unit=error_unit, fmt='(a,4i15)' ) 'e shape error', SHAPE(e), 3, n
STOP 'Error in test_pot_gb'
END IF
! Check unit vectors
IF ( ABS(SUM(e(:,i)**2)-1.0) > tol .OR. ABS(SUM(e(:,j)**2)-1.0) > tol ) THEN
WRITE ( unit=error_unit, fmt='(a)' ) 'Warning, non-unit vectors'
WRITE ( unit=error_unit, fmt='(4f10.5)' ) e(:,i), SUM(e(:,i)**2)
WRITE ( unit=error_unit, fmt='(4f10.5)' ) e(:,j), SUM(e(:,j)**2)
END IF
rij = r(:,i) - r(:,j)
rij_sq = SUM ( rij**2 )
rij_mag = SQRT(rij_sq) ! Magnitude of separation
sij = rij / rij_mag ! Unit vector along rij
! Orientation-dependent terms
ci = DOT_PRODUCT ( sij, e(:,i) )
cj = DOT_PRODUCT ( sij, e(:,j) )
cij = DOT_PRODUCT ( e(:,i), e(:,j) )
cp = ci + cj
cm = ci - cj
! Sigma formula
cpchi = cp/(1.0+chi*cij)
cmchi = cm/(1.0-chi*cij)
sigma = 1.0/SQRT(1.0-0.5*chi*(cp*cpchi+cm*cmchi))
! Epsilon formula
eps1 = 1.0/SQRT(1.0-(chi*cij)**2) ! Depends on chi, not xhi
cpxhi = cp/(1.0+xhi*cij)
cmxhi = cm/(1.0-xhi*cij)
eps2 = 1.0-0.5*xhi*(cp*cpxhi+cm*cmxhi) ! Depends on xhi
epsilon = (eps1**nu) * (eps2**mu)
! Potential at rij
rho = rij_mag - sigma + 1.0
rho6 = 1.0 / rho**6
rho12 = rho6**2
rhoterm = 4.0*(rho12 - rho6) ! Needed for forces and torques
drhoterm = -24.0 * (2.0 * rho12 - rho6) / rho ! Needed for forces and torques
pot = epsilon*rhoterm
! Potential at r_cut
rho = r_cut - sigma + 1.0
rho6 = 1.0 / rho**6
rho12 = rho6**2
cutterm = 4.0*(rho12 - rho6) ! Needed for cutoff forces and torques
dcutterm = -24.0 * (2.0 * rho12 - rho6) / rho ! Needed for cutoff forces and torques
pot = pot - epsilon * cutterm
IF ( .NOT. PRESENT(f) ) RETURN
IF ( .NOT. PRESENT(t) ) THEN
WRITE ( unit=error_unit, fmt='(a)' ) 'Both f and t expected'
STOP 'Error in test_pot_gb'
END IF
IF ( ANY ( SHAPE(f) /= [3,n] ) ) THEN
WRITE ( unit=error_unit, fmt='(a,4i15)' ) 'f shape error', SHAPE(f), 3, n
STOP 'Error in test_pot_gb'
END IF
IF ( ANY ( SHAPE(t) /= [3,n] ) ) THEN
WRITE ( unit=error_unit, fmt='(a,4i15)' ) 't shape error', SHAPE(t), 3, n
STOP 'Error in test_pot_gb'
END IF
! Derivatives of sigma
prefac = 0.5*chi*sigma**3
dsig_dci = prefac*(cpchi+cmchi)
dsig_dcj = prefac*(cpchi-cmchi)
prefac = prefac*(0.5*chi)
dsig_dcij = -prefac*(cpchi**2-cmchi**2)
! Derivatives of epsilon
prefac = -mu*xhi*(eps1**nu)*eps2**(mu-1)
deps_dci = prefac*(cpxhi+cmxhi)
deps_dcj = prefac*(cpxhi-cmxhi)
prefac = prefac*(0.5*xhi)
deps_dcij = -prefac*(cpxhi**2-cmxhi**2) ! From derivative of eps2
deps_dcij = deps_dcij + nu*(chi**2)*(eps1**(nu+2))*(eps2**mu)*cij ! From derivative of eps1
! Derivatives of potential
dpot_drij = epsilon * drhoterm
dpot_dci = rhoterm * deps_dci - epsilon * drhoterm * dsig_dci
dpot_dcj = rhoterm * deps_dcj - epsilon * drhoterm * dsig_dcj
dpot_dcij = rhoterm * deps_dcij - epsilon * drhoterm * dsig_dcij
! Standard formula for forces and torque gradients
fij = -dpot_drij*sij - dpot_dci*(e(:,i)-ci*sij)/rij_mag - dpot_dcj*(e(:,j)-cj*sij)/rij_mag
gi = dpot_dci*sij + dpot_dcij*e(:,j)
gj = dpot_dcj*sij + dpot_dcij*e(:,i)
! Derivatives of potential at cutoff
dpot_drij = epsilon * dcutterm
dpot_dci = cutterm * deps_dci - epsilon * dcutterm * dsig_dci
dpot_dcj = cutterm * deps_dcj - epsilon * dcutterm * dsig_dcj
dpot_dcij = cutterm * deps_dcij - epsilon * dcutterm * dsig_dcij
! Standard formula for forces and torque gradients (without dpot_drij term)
fij(:) = fij(:) + dpot_dci*(e(:,i)-ci*sij)/rij_mag + dpot_dcj*(e(:,j)-cj*sij)/rij_mag
gi(:) = gi(:) - ( dpot_dci*sij + dpot_dcij*e(:,j) )
gj(:) = gj(:) - ( dpot_dcj*sij + dpot_dcij*e(:,i) )
! Forces
f(:,i) = fij
f(:,j) = -fij
! Torques
t(:,i) = -cross_product ( e(:,i), gi ) ! Torque on i due to j
t(:,j) = -cross_product ( e(:,j), gj ) ! Torque on j due to i
END SUBROUTINE force
END MODULE test_pot_module