forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathqmc_pi_sho.f90
296 lines (226 loc) · 11.7 KB
/
qmc_pi_sho.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
! qmc_pi_sho.f90
! Quantum Monte Carlo, path-integral, harmonic oscillator
PROGRAM qmc_pi_sho
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Program to calculate the average total energy E at temperature T
! for a particle in a harmonic potential, V=(x**2)/2,
! by simulating the discretized path integral ring polymer of P beads
! In atomic units, classical oscillation freqency omega=1, hbar=1, mass=1
! so T is equivalent to kT/hbar*omega and E is equivalent to E/hbar*omega
! Results are output as averages over the production period.
! The value of <E> may be compared with the exact result for given P for this simple problem
! as well as the exact quantum result for P=infinity.
! For this simple illustration we only use crude single-particle Metropolis moves
! It is possible to devise smarter sampling schemes for the ring polymer
! Reads several variables and options from standard input using a namelist nml
! Leave namelist empty to accept supplied defaults
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor
USE averages_module, ONLY : run_begin, run_end, blk_begin, blk_end, blk_add
USE maths_module, ONLY : metropolis
IMPLICIT NONE
REAL, DIMENSION(:), ALLOCATABLE :: x ! Position of each bead (p)
! Most important variables
INTEGER :: p ! Number of beads in ring polymer
REAL :: temperature ! Specified temperature
REAL :: dx_max ! Maximum Monte Carlo displacement
REAL :: pot_cl ! Classical potential energy
REAL :: pot_qu ! Quantum potential energy
REAL :: xi, zeta, beta
REAL :: pot_cl_old, pot_cl_new, pot_qu_old, pot_qu_new
REAL :: k_spring, delta, e_qu, m_ratio
INTEGER :: i, ip1, im1, nstep, nblock, nequil, blk, stp
INTEGER :: moves, ioerr
NAMELIST /nml/ p, temperature, nstep, nblock, nequil, dx_max
WRITE ( unit=output_unit, fmt='(a)' ) 'qmc_pi_sho'
WRITE ( unit=output_unit, fmt='(a)' ) 'Path Integral Monte Carlo simulation of a quantum oscillator'
WRITE ( unit=output_unit, fmt='(a)' ) 'Results in atomic units'
CALL RANDOM_SEED() ! Initialize random number generator
! Set sensible default run parameters for testing
p = 8
temperature = 0.2
nstep = 50000
nblock = 20
nequil = 10
dx_max = 1.0
! Read run parameters from namelist
! Comment out, or replace, this section if you don't like namelists
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)' ) 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)' ) 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)' ) 'End of file'
STOP 'Error in qmc_pi_sho'
END IF
IF ( p < 2 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'p must be > 1 in this program ', p
STOP 'Error in qmc_pi_sho'
END IF
! Write out run parameters
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of beads, P = ', p
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Temperature = ', temperature
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of blocks for production = ', nblock
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of blocks for equilibration = ', nequil
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps per block = ', nstep
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Max displacement = ', dx_max
beta = 1.0 / temperature
k_spring = REAL(p) * temperature**2
ALLOCATE ( x(p) )
x = 0.0 ! Set up initial positions at origin
! Calculate initial values
pot_cl = 0.5 * SUM ( x**2 ) / REAL (p ) ! Classical potential energy
pot_qu = 0.5 * k_spring * SUM ( ( x-CSHIFT(x,1) )**2 ) ! Quantum potential energy
! Initialize arrays for averaging and write column headings
m_ratio = 0.0
CALL run_begin ( calc_variables() )
DO blk = 1-nequil, nblock ! Begin loop over blocks (including equilibration)
CALL blk_begin
DO stp = 1, nstep ! Begin loop over steps
moves = 0
DO i = 1, p ! Begin loop over beads
! Identify neighbours
ip1 = i+1
IF ( ip1 > p ) ip1 = 1
im1 = i-1
IF ( im1 < 1 ) im1 = p
CALL RANDOM_NUMBER ( zeta ) ! One uniform random number in range (0,1)
zeta = 2.0*zeta - 1.0 ! Now in range (-1,+1)
xi = x(i)
pot_cl_old = 0.5 * xi**2 / REAL(p)
pot_qu_old = 0.5 * k_spring * ( (xi-x(im1))**2 + (xi-x(ip1))**2 )
xi = xi + zeta * dx_max ! Trial move to new position
pot_cl_new = 0.5 * xi**2 / REAL(p)
pot_qu_new = 0.5 * k_spring * ( (xi-x(im1))**2 + (xi-x(ip1))**2 )
delta = ( pot_cl_new + pot_qu_new - pot_cl_old - pot_qu_old ) / temperature
IF ( metropolis ( delta ) ) THEN ! Accept Metropolis test
pot_cl = pot_cl + pot_cl_new - pot_cl_old ! Update classical potential energy
pot_qu = pot_qu + pot_qu_new - pot_qu_old ! Update quantum potential energy
x(i) = xi ! Update position
moves = moves + 1 ! Increment move counter
END IF ! Reject Metropolis test
END DO ! End loop over beads
m_ratio = REAL(moves) / REAL(p)
IF ( blk > 0 ) THEN ! Test for production phase
! Calculate and accumulate variables for this step
CALL blk_add ( calc_variables() )
END IF ! End test for production phase
END DO ! End loop over steps
IF ( blk > 0 ) CALL blk_end ( blk ) ! Output block averages
END DO ! End loop over blocks (including equilibration)
CALL run_end ( calc_variables() ) ! Output run averages
e_qu = e_pi_sho ( p, beta )
WRITE ( unit=output_unit, fmt='(a,i0.0,a,t40,f15.6)' ) 'Exact P=', p, ' energy', e_qu
e_qu = 0.5 / TANH(0.5*beta)
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Exact P=infinity energy', e_qu
CONTAINS
FUNCTION calc_variables ( ) RESULT ( variables )
USE averages_module, ONLY : variable_type
IMPLICIT NONE
TYPE(variable_type), DIMENSION(4) :: variables ! The 4 variables listed below
! This routine calculates all variables of interest and (optionally) writes them out
! They are collected together in the variables array, for use in the main program
TYPE(variable_type) :: m_r, pe_cl, pe_qu, energy
REAL :: kin
! Preliminary calculations
kin = 0.5 * p * temperature ! Kinetic energy for P-bead system
! Move ratio
m_r = variable_type ( nam = 'Move:ratio', val = m_ratio, instant = .FALSE. )
! Classical potential energy
pe_cl = variable_type ( nam = 'PE:classical', val = pot_cl )
! Quantum potential energy
pe_qu = variable_type ( nam = 'PE:quantum', val = pot_qu )
! Energy
energy = variable_type ( nam = 'Energy', val = kin+pot_cl-pot_qu )
! Collect together for averaging
variables = [ m_r, pe_cl, pe_qu, energy ]
END FUNCTION calc_variables
FUNCTION e_pi_sho ( p, beta ) RESULT ( e )
IMPLICIT NONE
INTEGER, INTENT(in) :: p
REAL, INTENT(in) :: beta
REAL :: e
REAL :: t, s, alpha, q1, q2, q1p, q2p
! Exact formulae given by
! KS Schweizer, RM Stratt, D Chandler, and PG Wolynes, J Chem Phys, 75, 1347 (1981)
! M Takahashi and M Imada, J Phys Soc Japan, 53, 3765 (1984)
! For not-too-high P, we may express the results as a ratio of polynomials in alpha,
! with integer coefficients, most conveniently in partial-fraction form.
! We give these up to P=8, and they are easy to obtain using a computer algebra package.
! Otherwise, we use the floating-point formula, but this might become
! inaccurate for certain values of the parameters
IF ( p < 1 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error in value of p ', p
STOP 'Error in e_pi_sho'
END IF
t = 1 / beta
s = ( REAL(p)*t ) ** 2
SELECT CASE ( p )
CASE (1)
e = t
CASE (2)
e = 1.0 + 1.0 / polynomial ( [1,4], s )
e = e * t
CASE (3)
e = 1.0 + 2.0 / polynomial ( [1,3], s )
e = e * t
CASE (4)
e = 1.0 + 1.0 / polynomial ( [1,4], s )
e = e + 2.0 / polynomial ( [1,2], s )
e = e * t
CASE (5)
e = 1.0 + polynomial ( [4,10], s ) / polynomial ( [1,5,5], s )
e = e * t
CASE (6)
e = 1.0 + 1.0 / polynomial ( [1,4], s )
e = e + 2.0 / polynomial ( [1,1], s )
e = e + 2.0 / polynomial ( [1,3], s )
e = e * t
CASE (7)
e = 1.0 + polynomial ( [6,28,28], s ) / polynomial ( [1,7,14,7], s )
e = e * t
CASE (8)
e = 1.0 + 1.0 / polynomial ( [1,4], s )
e = e + 2.0 / polynomial ( [1,2], s )
e = e + polynomial ( [4,8], s ) / polynomial ( [1,4,2], s )
e = e * t
CASE default
alpha = 0.5 * beta / REAL(p)
q1 = SQRT(1.0+alpha**2) + alpha
q2 = SQRT(1.0+alpha**2) - alpha
q1p = q1 ** p
q2p = q2 ** p
e = (q1p+q2p) / ( (q1p-q2p) * (q1+q2) )
END SELECT
END FUNCTION e_pi_sho
FUNCTION polynomial ( c, x ) RESULT ( f )
IMPLICIT NONE
INTEGER, DIMENSION(:), INTENT(in) :: c ! coefficients of x**0, x**1, x**2 etc
REAL, INTENT(in) :: x ! argument
REAL :: f ! result
INTEGER :: i
f = 0.0
DO i = SIZE(c), 1, -1
f = f * x + REAL ( c(i) )
END DO
END FUNCTION polynomial
END PROGRAM qmc_pi_sho