forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathqmc_pi_lj_module.f90
324 lines (249 loc) · 13.1 KB
/
qmc_pi_lj_module.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
! qmc_pi_lj_module.f90
! Energy and move routines for PIMC simulation, LJ potential
MODULE qmc_module
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
USE, INTRINSIC :: iso_fortran_env, ONLY : output_unit, error_unit
IMPLICIT NONE
PRIVATE
! Public routines
PUBLIC :: introduction, conclusion, allocate_arrays, deallocate_arrays
PUBLIC :: potential_1, potential, spring_1, spring
! Public data
INTEGER, PUBLIC :: n ! Number of atoms
INTEGER, PUBLIC :: p ! Number of beads
REAL, DIMENSION(:,:,:), ALLOCATABLE, PUBLIC :: r ! Positions (3,n,p)
! Private data
INTEGER, PARAMETER :: lt = -1, gt = 1 ! j-range and l-range options
! Public derived type
TYPE, PUBLIC :: potential_type ! A composite variable for interaction energies comprising
REAL :: pot ! the cut (but not shifted) potential energy and
REAL :: vir ! the virial and
LOGICAL :: ovr ! a flag indicating overlap (i.e. pot too high to use)
CONTAINS
PROCEDURE :: add_potential_type
PROCEDURE :: subtract_potential_type
GENERIC :: OPERATOR(+) => add_potential_type
GENERIC :: OPERATOR(-) => subtract_potential_type
END TYPE potential_type
CONTAINS
FUNCTION add_potential_type ( a, b ) RESULT (c)
IMPLICIT NONE
TYPE(potential_type) :: c ! Result is the sum of
CLASS(potential_type), INTENT(in) :: a, b ! the two inputs
c%pot = a%pot + b%pot
c%vir = a%vir + b%vir
c%ovr = a%ovr .OR. b%ovr
END FUNCTION add_potential_type
FUNCTION subtract_potential_type ( a, b ) RESULT (c)
IMPLICIT NONE
TYPE(potential_type) :: c ! Result is the difference of
CLASS(potential_type), INTENT(in) :: a, b ! the two inputs
c%pot = a%pot - b%pot
c%vir = a%vir - b%vir
c%ovr = a%ovr .OR. b%ovr ! This is meaningless, but inconsequential
END FUNCTION subtract_potential_type
SUBROUTINE introduction
IMPLICIT NONE
WRITE ( unit=output_unit, fmt='(a)' ) 'Lennard-Jones potential'
WRITE ( unit=output_unit, fmt='(a)' ) 'Cut (but not shifted)'
WRITE ( unit=output_unit, fmt='(a)' ) 'Diameter, sigma = 1'
WRITE ( unit=output_unit, fmt='(a)' ) 'Well depth, epsilon = 1'
END SUBROUTINE introduction
SUBROUTINE conclusion
IMPLICIT NONE
WRITE ( unit=output_unit, fmt='(a)') 'Program ends'
END SUBROUTINE conclusion
SUBROUTINE allocate_arrays ( box, r_cut )
IMPLICIT NONE
REAL, INTENT(in) :: box ! Simulation box length
REAL, INTENT(in) :: r_cut ! Potential cutoff distance
REAL :: r_cut_box
ALLOCATE ( r(3,n,p) )
r_cut_box = r_cut / box
IF ( r_cut_box > 0.5 ) THEN
WRITE ( unit=error_unit, fmt='(a,f15.6)') 'r_cut/box too large ', r_cut_box
STOP 'Error in allocate_arrays'
END IF
END SUBROUTINE allocate_arrays
SUBROUTINE deallocate_arrays
IMPLICIT NONE
DEALLOCATE ( r )
END SUBROUTINE deallocate_arrays
FUNCTION potential ( box, r_cut ) RESULT ( total )
IMPLICIT NONE
TYPE(potential_type) :: total ! Returns a composite of pot, vir and ovr
REAL, INTENT(in) :: box ! Simulation box length
REAL, INTENT(in) :: r_cut ! Potential cutoff distance
! total%pot is the nonbonded cut (not shifted) classical potential energy for whole system
! total%vir is the corresponding virial for whole system
! total%ovr is a flag indicating overlap (potential too high) to avoid overflow
! If this flag is .true., the values of total%pot etc should not be used
! Actual calculation is performed by function potential_1
TYPE(potential_type) :: partial ! Atomic contribution to total
INTEGER :: i, k
IF ( n /= SIZE(r,dim=2) ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a,2i15)' ) 'Array bounds error for r, n=', n, SIZE(r,dim=2)
STOP 'Error in potential'
END IF
IF ( p /= SIZE(r,dim=3) ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a,2i15)' ) 'Array bounds error for r, p=', p, SIZE(r,dim=3)
STOP 'Error in potential'
END IF
total = potential_type ( pot=0.0, vir=0.0, ovr=.FALSE. ) ! Initialize
DO k = 1, p ! Loop over ring polymers
DO i = 1, n - 1 ! Loop over atoms within polymer
partial = potential_1 ( r(:,i,k), i, k, box, r_cut, gt )
IF ( partial%ovr ) THEN
total%ovr = .TRUE. ! Overlap detected
RETURN ! Return immediately
END IF
total = total + partial
END DO ! End loop over atoms within polymer
END DO ! End loop over ring polymers
total%ovr = .FALSE. ! No overlaps detected (redundant, but for clarity)
END FUNCTION potential
FUNCTION potential_1 ( rik, i, k, box, r_cut, j_range ) RESULT ( partial )
IMPLICIT NONE
TYPE(potential_type) :: partial ! Returns a composite of pot, vir and ovr for given atom
REAL, DIMENSION(3), INTENT(in) :: rik ! Coordinates of atom of interest
INTEGER, INTENT(in) :: i, k ! Index and polymer id of atom of interest
REAL, INTENT(in) :: box ! Simulation box length
REAL, INTENT(in) :: r_cut ! Potential cutoff distance
INTEGER, OPTIONAL, INTENT(in) :: j_range ! Optional partner index range
! partial%pot is the nonbonded cut (not shifted) classical potential energy of atom rik with a set of other atoms
! partial%vir is the corresponding virial of atom rik
! partial%ovr is a flag indicating overlap (potential too high) to avoid overflow
! If this is .true., the value of partial%pot should not be used
! The coordinates in rik are not necessarily identical with those in r(:,i,k)
! The partner atoms always have the same polymer index k
! The optional argument j_range restricts partner indices to j>i, or j<i
! It is assumed that r has been divided by box
! Results are in LJ units where sigma = 1, epsilon = 1
INTEGER :: j, j1, j2
REAL :: r_cut_box, r_cut_box_sq, box_sq
REAL :: sr2, sr6, sr12, r_ik_jk_sq
REAL, DIMENSION(3) :: r_ik_jk
REAL, PARAMETER :: sr2_ovr = 1.77 ! overlap threshold (pot > 100)
TYPE(potential_type) :: pair
IF ( n /= SIZE(r,dim=2) ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a,2i15)' ) 'Array bounds error for r, n=', n, SIZE(r,dim=2)
STOP 'Error in potential_1'
END IF
IF ( p /= SIZE(r,dim=3) ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a,2i15)' ) 'Array bounds error for r, p=', p, SIZE(r,dim=3)
STOP 'Error in potential_1'
END IF
IF ( PRESENT ( j_range ) ) THEN
SELECT CASE ( j_range )
CASE ( lt ) ! j < i
j1 = 1
j2 = i-1
CASE ( gt ) ! j > i
j1 = i+1
j2 = n
CASE default ! should never happen
WRITE ( unit = error_unit, fmt='(a,i10)') 'j_range error ', j_range
STOP 'Impossible error in potential_1'
END SELECT
ELSE
j1 = 1
j2 = n
END IF
r_cut_box = r_cut / box
r_cut_box_sq = r_cut_box**2
box_sq = box**2
partial = potential_type ( pot=0.0, vir=0.0, ovr=.FALSE. ) ! Initialize
DO j = j1, j2 ! Loop over selected range of partners
IF ( i == j ) CYCLE ! Skip self
r_ik_jk(:) = rik(:) - r(:,j,k) ! Separation vector
r_ik_jk(:) = r_ik_jk(:) - ANINT ( r_ik_jk(:) ) ! Periodic boundaries in box=1 units
r_ik_jk_sq = SUM ( r_ik_jk**2 ) ! Squared separation in box=1 units
IF ( r_ik_jk_sq < r_cut_box_sq ) THEN ! Check within range
r_ik_jk_sq = r_ik_jk_sq * box_sq ! now in sigma=1 units
sr2 = 1.0 / r_ik_jk_sq ! (sigma/rikjk)**2
pair%ovr = sr2 > sr2_ovr ! Overlap if too close
IF ( pair%ovr ) THEN
partial%ovr = .TRUE. ! Overlap detected
RETURN ! Return immediately
END IF
sr6 = sr2**3
sr12 = sr6**2
pair%pot = sr12 - sr6 ! LJ potential (cut but not shifted)
pair%vir = pair%pot + sr12 ! LJ pair virial
partial = partial + pair
END IF ! End check with range
END DO ! End loop over selected range of partners
! Include numerical factors
partial%pot = partial%pot * 4.0 / REAL ( p ) ! Classical potentials are weaker by a factor p
partial%vir = partial%vir * 24.0 / REAL(3*p) ! 24*epsilon and divide virial by 3 & by p
partial%ovr = .FALSE. ! No overlaps detected (redundant, but for clarity)
END FUNCTION potential_1
FUNCTION spring ( box, k_spring ) RESULT ( total )
IMPLICIT NONE
REAL :: total ! Returns quantum spring potential
REAL, INTENT(in) :: box ! Simulation box length
REAL, INTENT(in) :: k_spring ! Spring potential constant
! total is the quantum spring potential for whole system
! Actual calculation is performed by subroutine spring_1
INTEGER :: i, k, kp
REAL :: partial_pot
IF ( n /= SIZE(r,dim=2) ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a,2i15)' ) 'Array bounds error for r, n=', n, SIZE(r,dim=2)
STOP 'Error in spring'
END IF
IF ( p /= SIZE(r,dim=3) ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a,2i15)' ) 'Array bounds error for r, p=', p, SIZE(r,dim=3)
STOP 'Error in spring'
END IF
total = 0.0
DO k = 1, p ! Loop over atoms within polymer
kp = k+1
IF ( kp > p ) kp = 1
DO i = 1, n ! Loop over ring polymers
partial_pot = spring_1 ( r(:,i,k), r(:,i,kp), box, k_spring )
total = total + partial_pot
END DO ! End loop over ring polymers
END DO ! End loop over atoms within polymer
END FUNCTION spring
FUNCTION spring_1 ( rik, ril, box, k_spring ) RESULT ( partial_pot )
IMPLICIT NONE
REAL :: partial_pot ! Returns quantum potential for given atom
REAL, DIMENSION(3), INTENT(in) :: rik ! Coordinates of atom of interest
REAL, DIMENSION(3), INTENT(in) :: ril ! Coordinates of other atom of interest
REAL, INTENT(in) :: box ! Simulation box length
REAL, INTENT(in) :: k_spring ! Spring potential constant
! partial_pot is the quantum spring energy of atom (i,k) in rik for polymer bead k
! with its neighbour (i,l) in the same polymer ring
! The coordinates in rik are not necessarily identical with those in r(:,i,k)
! The partner atom index is always the same as i
! It is assumed that r has been divided by box
! Results are in LJ units where sigma = 1, epsilon = 1
REAL :: r_ik_il_sq
REAL, DIMENSION(3) :: r_ik_il
r_ik_il(:) = rik(:) - ril(:)
r_ik_il(:) = r_ik_il(:) - ANINT ( r_ik_il(:) ) ! Periodic boundaries in box=1 units
r_ik_il_sq = SUM ( r_ik_il**2 ) * box**2 ! Squared distance in sigma=1 units
partial_pot = 0.5 * k_spring * r_ik_il_sq ! Spring potential
END FUNCTION spring_1
END MODULE qmc_module