forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmc_nvt_sc.py
executable file
·181 lines (143 loc) · 8.16 KB
/
mc_nvt_sc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python3
# mc_nvt_sc.py
#------------------------------------------------------------------------------------------------#
# This software was written in 2016/17 #
# by Michael P. Allen <[email protected]>/<[email protected]> #
# and Dominic J. Tildesley <[email protected]> ("the authors"), #
# to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), #
# published by Oxford University Press ("the publishers"). #
# #
# LICENCE #
# Creative Commons CC0 Public Domain Dedication. #
# To the extent possible under law, the authors have dedicated all copyright and related #
# and neighboring rights to this software to the PUBLIC domain worldwide. #
# This software is distributed without any warranty. #
# You should have received a copy of the CC0 Public Domain Dedication along with this software. #
# If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. #
# #
# DISCLAIMER #
# The authors and publishers make no warranties about the software, and disclaim liability #
# for all uses of the software, to the fullest extent permitted by applicable law. #
# The authors and publishers do not recommend use of this software for any purpose. #
# It is made freely available, solely to clarify points made in the text. When using or citing #
# the software, you should not imply endorsement by the authors or publishers. #
#------------------------------------------------------------------------------------------------#
"""Monte Carlo, NVT ensemble, linear hard molecules."""
def calc_variables ( ):
"""Calculates all variables of interest.
They are collected and returned as a list, for use in the main program.
"""
import numpy as np
import math
from mc_sc_module import n_overlap
from averages_module import VariableType
from maths_module import nematic_order
# Preliminary calculations (m_ratio, eps_box, box are taken from the calling program)
vir = n_overlap ( box/(1.0+eps_box), r, e ) / (3.0*eps_box) # Virial
vol = box**3 # Volume
rho = n / vol # Density
ord = nematic_order ( e ) # Order
# Variables of interest, of class VariableType, containing three attributes:
# .val: the instantaneous value
# .nam: used for headings
# .method: indicating averaging method
# If not set below, .method adopts its default value of avg
# The .nam and some other attributes need only be defined once, at the start of the program,
# but for clarity and readability we assign all the values together below
# Move acceptance ratio
m_r = VariableType ( nam = 'Move ratio', val = m_ratio, instant = False )
# Pressure in units kT/sigma**3
# Ideal gas contribution plus total virial divided by V
p = VariableType ( nam = 'P', val = rho + vir/vol )
# Orientational order parameter
order = VariableType ( nam = 'Nematic order', val = ord )
# Collect together into a list for averaging
return [ m_r, p, order ]
# Takes in a configuration of linear molecules (positions and orientations)
# Cubic periodic boundary conditions
# Conducts Monte Carlo (the temperature is irrelevant)
# Uses no special neighbour lists
# Reads several variables and options from standard input using JSON format
# Leave input empty "{}" to accept supplied defaults
# We take kT=1 throughout defining the unit of energy
# Positions r are divided by box length after reading in
# However, input configuration, output configuration, most calculations, and all results
# are given in simulation units defined by the model
# Despite the program name, there is nothing here specific to spherocylinders
# The model is defined in mc_sc_module
import json
import sys
import numpy as np
import math
from config_io_module import read_cnf_mols, write_cnf_mols
from averages_module import run_begin, run_end, blk_begin, blk_end, blk_add
from maths_module import random_translate_vector, random_rotate_vector
from mc_sc_module import introduction, conclusion, overlap, overlap_1
cnf_prefix = 'cnf.'
inp_tag = 'inp'
out_tag = 'out'
sav_tag = 'sav'
print('mc_nvt_sc')
print('Monte Carlo, constant-NVT ensemble')
# Read parameters in JSON format
try:
nml = json.load(sys.stdin)
except json.JSONDecodeError:
print('Exiting on Invalid JSON format')
sys.exit()
# Set default values, check keys and typecheck values
defaults = {"nblock":10, "nstep":1000, "dr_max":0.05, "de_max":0.05, "eps_box":0.001}
for key, val in nml.items():
if key in defaults:
assert type(val) == type(defaults[key]), key+" has the wrong type"
else:
print('Warning', key, 'not in ',list(defaults.keys()))
# Set parameters to input values or defaults
nblock = nml["nblock"] if "nblock" in nml else defaults["nblock"]
nstep = nml["nstep"] if "nstep" in nml else defaults["nstep"]
dr_max = nml["dr_max"] if "dr_max" in nml else defaults["dr_max"]
de_max = nml["de_max"] if "de_max" in nml else defaults["de_max"]
eps_box = nml["eps_box"] if "eps_box" in nml else defaults["eps_box"]
introduction()
np.random.seed()
# Write out parameters
print( "{:40}{:15d} ".format('Number of blocks', nblock) )
print( "{:40}{:15d} ".format('Number of steps per block', nstep) )
print( "{:40}{:15.6f}".format('Maximum displacement', dr_max) )
print( "{:40}{:15.6f}".format('Maximum rotation', de_max) )
print( "{:40}{:15.6f}".format('Pressure scaling parameter', eps_box) )
# Read in initial configuration
n, box, r, e = read_cnf_mols ( cnf_prefix+inp_tag)
print( "{:40}{:15d} ".format('Number of particles', n) )
print( "{:40}{:15.6f}".format('Box length', box) )
print( "{:40}{:15.6f}".format('Density', n/box**3) )
r = r / box # Convert positions to box units
r = r - np.rint ( r ) # Periodic boundaries
# Initial pressure and overlap check
assert not overlap ( box, r, e ), 'Overlap in initial configuration'
# Initialize arrays for averaging and write column headings
m_ratio = 0.0
run_begin ( calc_variables() )
for blk in range(1,nblock+1): # Loop over blocks
blk_begin()
for stp in range(nstep): # Loop over steps
moves = 0
for i in range(n): # Loop over atoms
ri = random_translate_vector ( dr_max/box, r[i,:] ) # Trial move to new position (in box=1 units)
ri = ri - np.rint ( ri ) # Periodic boundary correction
ei = random_rotate_vector ( de_max, e[i,:] ) # Trial move to new orientation
rj = np.delete(r,i,0) # Array of all the other atoms
ej = np.delete(e,i,0) # Array of all the other atoms
if not overlap_1 ( ri, ei, box, rj, ej ): # Test for non-overlapping configuration
r[i,:] = ri # Update position
e[i,:] = ei # Update position
moves = moves + 1 # Increment move counter
m_ratio = moves / n
blk_add ( calc_variables() )
blk_end(blk) # Output block averages
sav_tag = str(blk).zfill(3) if blk<1000 else 'sav' # Number configuration by block
write_cnf_mols ( cnf_prefix+sav_tag, n, box, r*box, e ) # Save configuration
run_end ( calc_variables() )
assert not overlap ( box, r, e ), 'Overlap in final configuration'
write_cnf_mols ( cnf_prefix+out_tag, n, box, r*box, e ) # Save configuration
conclusion()