forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheos_lj.py
executable file
·134 lines (114 loc) · 6.69 KB
/
eos_lj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python3
# eos_lj.py
#------------------------------------------------------------------------------------------------#
# This software was written in 2016/17 #
# by Michael P. Allen <[email protected]>/<[email protected]> #
# and Dominic J. Tildesley <[email protected]> ("the authors"), #
# to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), #
# published by Oxford University Press ("the publishers"). #
# #
# LICENCE #
# Creative Commons CC0 Public Domain Dedication. #
# To the extent possible under law, the authors have dedicated all copyright and related #
# and neighboring rights to this software to the PUBLIC domain worldwide. #
# This software is distributed without any warranty. #
# You should have received a copy of the CC0 Public Domain Dedication along with this software. #
# If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. #
# #
# DISCLAIMER #
# The authors and publishers make no warranties about the software, and disclaim liability #
# for all uses of the software, to the fullest extent permitted by applicable law. #
# The authors and publishers do not recommend use of this software for any purpose. #
# It is made freely available, solely to clarify points made in the text. When using or citing #
# the software, you should not imply endorsement by the authors or publishers. #
#------------------------------------------------------------------------------------------------#
"""Equation of State for Lennard-Jones pair potential."""
import json
import sys
import numpy as np
from eos_lj_module import a_res_full, a_res_cutshift
from lrc_module import potential_lrc, pressure_lrc, pressure_delta
# The routines in the above module use the fitting function described and parametrized in
# M Thol, G Rutkai, R Span, J Vrabec, R Lustig, Int J Thermophys 36, 25 (2015)
# M Thol, G Rutkai, A Koester, R Lustig, R Span, J Vrabec, J Phys Chem Ref Data 45, 023101 (2016)
# Those authors also supply C++ codes (in the supplementary information of those papers)
# They are NOT responsible for this Fortran code, which was written independently by Michael P Allen
# A similar notation, consistent with the papers, is retained for clarity.
# Formulae for P, E/N etc in terms of the scaled free energy derivatives a_res(0,1) etc
# may be found in the above papers
r_cut = 2.5
# Read parameters in JSON format
try:
nml = json.load(sys.stdin)
except json.JSONDecodeError:
print('Exiting on Invalid JSON format')
sys.exit()
# Set default values, check keys and typecheck values
defaults = {"temperature":1.0, "density":0.75}
for key, val in nml.items():
if key in defaults:
assert type(val) == type(defaults[key]), key+" has the wrong type"
else:
print('Warning', key, 'not in ', list(defaults.keys()))
# Set parameters to input values or defaults
temperature = nml["temperature"] if "temperature" in nml else defaults["temperature"]
density = nml["density"] if "density" in nml else defaults["density"]
# Write out parameters
print ( "{:40}{:15.6f}".format('Temperature T', temperature ) )
print ( "{:40}{:15.6f}".format('Density rho', density) )
# Results for full potential from Thol et al (2016) fitting formula
print('')
print('Full Lennard-Jones potential')
print('')
a_res = a_res_full ( temperature, density )
for (i,j), aij in np.ndenumerate ( a_res ):
if i+j > 2: # Only interested in some of the results
continue
print ( "{:4}{:1d}{:<35d}{:15.6f}".format('Ares', i, j, aij ) )
p = density * temperature * ( 1.0 + a_res[0,1] )
e = temperature * ( 1.5 + a_res[1,0] )
cv = 1.5 - a_res[2,0]
cp = 2.5 - a_res[2,0]+(1.0+a_res[0,1]-a_res[1,1])*(1.0+a_res[0,1]-a_res[1,1])/(1.0+2.0*a_res[0,1]+a_res[0,2]) - 1.0
mu = temperature * ( np.log(density) + a_res[0,0] + a_res[0,1] )
z = density * np.exp ( a_res[0,0] + a_res[0,1] )
print('')
print ( "{:40}{:15.6f}".format('Pressure P', p ) )
print ( "{:40}{:15.6f}".format('Energy E/N', e ) )
print ( "{:40}{:15.6f}".format('Heat capacity Cv/NkB', cv ) )
print ( "{:40}{:15.6f}".format('Heat capacity Cp/NkB', cp ) )
print ( "{:40}{:15.6f}".format('Chemical potential mu', mu ) )
print ( "{:40}{:15.6f}".format('Activity z', z ) )
# Estimates for cut (but not shifted) potential by reverse-application of long-range & delta corrections
print('')
print('Lennard-Jones potential cut (but not shifted) at 2.5 sigma')
p = p - pressure_lrc ( density, r_cut ) + pressure_delta ( density, r_cut )
e = e - potential_lrc ( density, r_cut )
mu = mu - 2.0 * potential_lrc ( density, r_cut )
z = z * np.exp ( -2.0* potential_lrc ( density, r_cut ) / temperature )
print('')
print ( "{:40}{:15.6f}".format('Pressure P', p ) )
print ( "{:40}{:15.6f}".format('Energy E/N', e ) )
print ( "{:40}{:15.6f}".format('Chemical potential mu', mu ) )
print ( "{:40}{:15.6f}".format('Activity z', z ) )
# Results for cut-and-shifted potential from Thol et al (2015) fitting formula
print('')
print('Lennard-Jones potential cut-and-shifted at 2.5 sigma')
print('')
a_res = a_res_cutshift ( temperature, density )
for (i,j), aij in np.ndenumerate ( a_res ):
if i+j > 2: # Only interested in some of the results
continue
print ( "{:4}{:1d}{:<35d}{:15.6f}".format('Ares', i, j, aij ) )
p = density * temperature * ( 1.0 + a_res[0,1] )
e = temperature * ( 1.5 + a_res[1,0] )
cv = 1.5 - a_res[2,0]
cp = 2.5 - a_res[2,0]+(1.0+a_res[0,1]-a_res[1,1])*(1.0+a_res[0,1]-a_res[1,1])/(1.0+2.0*a_res[0,1]+a_res[0,2]) - 1.0
mu = temperature * ( np.log(density) + a_res[0,0] + a_res[0,1] )
z = density * np.exp ( a_res[0,0] + a_res[0,1] )
print('')
print ( "{:40}{:15.6f}".format('Pressure P', p ) )
print ( "{:40}{:15.6f}".format('Energy E/N', e ) )
print ( "{:40}{:15.6f}".format('Heat capacity Cv/NkB', cv ) )
print ( "{:40}{:15.6f}".format('Heat capacity Cp/NkB', cp ) )
print ( "{:40}{:15.6f}".format('Chemical potential mu', mu ) )
print ( "{:40}{:15.6f}".format('Activity z', z ) )