forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmd_nvt_lj_le.f90
298 lines (228 loc) · 13.1 KB
/
md_nvt_lj_le.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
! md_nvt_lj_le.f90
! MD, NVT ensemble, Lees-Edwards boundaries
PROGRAM md_nvt_lj_le
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Takes in a configuration of atoms (positions, velocities)
! Cubic periodic boundary conditions, with Lees-Edwards shear
! Conducts molecular dynamics, SLLOD algorithm, with isokinetic thermostat
! Refs: Pan et al J Chem Phys 122 094114 (2005)
! Reads several variables and options from standard input using a namelist nml
! Leave namelist empty to accept supplied defaults
! Positions r are divided by box length after reading in and we assume mass=1 throughout
! However, input configuration, output configuration, most calculations, and all results
! are given in simulation units defined by the model
! For example, for Lennard-Jones, sigma = 1, epsilon = 1
! Despite the program name, there is nothing here specific to Lennard-Jones
! The model is defined in md_module
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor
USE config_io_module, ONLY : read_cnf_atoms, write_cnf_atoms
USE averages_module, ONLY : run_begin, run_end, blk_begin, blk_end, blk_add
USE md_module, ONLY : introduction, conclusion, allocate_arrays, deallocate_arrays, &
& force, r, v, f, n, potential_type
IMPLICIT NONE
! Most important variables
REAL :: box ! Box length
REAL :: density ! Density
REAL :: dt ! Time step
REAL :: strain_rate ! Strain_rate (velocity gradient) dv_x/dr_y
REAL :: strain ! Strain (integrated velocity gradient) dr_x/dr_y
! Composite interaction = pot & vir & lap & ovr variables
TYPE(potential_type) :: total
INTEGER :: blk, stp, nstep, nblock, ioerr
REAL, DIMENSION(3) :: vcm
REAL, PARAMETER :: tol = 1.0e-6
CHARACTER(len=4), PARAMETER :: cnf_prefix = 'cnf.'
CHARACTER(len=3), PARAMETER :: inp_tag = 'inp'
CHARACTER(len=3), PARAMETER :: out_tag = 'out'
CHARACTER(len=3) :: sav_tag = 'sav' ! May be overwritten with block number
NAMELIST /nml/ nblock, nstep, dt, strain_rate
WRITE ( unit=output_unit, fmt='(a)' ) 'md_nvt_lj_le'
WRITE ( unit=output_unit, fmt='(a)' ) 'Molecular dynamics, constant-NVT ensemble, Lees-Edwards'
WRITE ( unit=output_unit, fmt='(a)' ) 'Particle mass=1 throughout'
CALL introduction
! Set sensible default run parameters for testing
nblock = 10
nstep = 100000
dt = 0.005
strain_rate = 0.04
! Read run parameters from namelist
! Comment out, or replace, this section if you don't like namelists
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in md_nvt_lj_le'
END IF
! Write out run parameters
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of blocks', nblock
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps per block', nstep
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Time step', dt
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Strain rate', strain_rate
! Insist that strain be zero (i.e. an integer) at end of each block
strain = strain_rate * dt * REAL(nstep)
strain = strain - ANINT ( strain )
IF ( ABS ( strain ) > tol ) THEN
WRITE ( unit=error_unit, fmt='(a,es15.6)') 'Strain must be zero at end of block', strain
STOP 'Error in md_nvt_lj_le'
END IF
! Read in initial configuration and allocate necessary arrays
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box ) ! First call just to get n and box
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of particles', n
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Simulation box length', box
density = REAL(n) / box**3
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Density', density
CALL allocate_arrays ( box )
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box, r, v ) ! Second call gets r and v
strain = 0.0 ! For simplicity assume that this is true
r(:,:) = r(:,:) / box ! Convert positions to box units
r(1,:) = r(1,:) - ANINT ( r(2,:) ) * strain ! Extra correction (box=1 units)
r(:,:) = r(:,:) - ANINT ( r(:,:) ) ! Periodic boundaries (box=1 units)
vcm(:) = SUM ( v(:,:), dim=2 ) / REAL(n) ! Centre-of mass velocity
v(:,:) = v(:,:) - SPREAD ( vcm(:), dim = 2, ncopies = n ) ! Set COM velocity to zero
! Initial forces, potential, etc plus overlap check
CALL force ( box, strain, total )
IF ( total%ovr ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in initial configuration'
STOP 'Error in md_nvt_lj_le'
END IF
! Initialize arrays for averaging and write column headings
CALL run_begin ( calc_variables() )
DO blk = 1, nblock ! Begin loop over blocks
CALL blk_begin
DO stp = 1, nstep ! Begin loop over steps
! Isokinetic SLLOD algorithm (Pan et al)
CALL a_propagator ( dt/2.0 )
CALL b1_propagator ( dt/2.0 )
CALL force ( box, strain, total )
IF ( total%ovr ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in configuration'
STOP 'Error in md_nvt_lj_le'
END IF
CALL b2_propagator ( dt )
CALL b1_propagator ( dt/2.0 )
CALL a_propagator ( dt/2.0 )
! Calculate and accumulate variables for this step
CALL blk_add ( calc_variables() )
END DO ! End loop over steps
CALL blk_end ( blk ) ! Output block averages
IF ( nblock < 1000 ) WRITE(sav_tag,'(i3.3)') blk ! Number configuration by block
CALL write_cnf_atoms ( cnf_prefix//sav_tag, n, box, r*box, v ) ! Save configuration
END DO ! End loop over blocks
CALL run_end ( calc_variables() )
CALL force ( box, strain, total )
IF ( total%ovr ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in final configuration'
STOP 'Error in md_nvt_lj_le'
END IF
CALL write_cnf_atoms ( cnf_prefix//out_tag, n, box, r*box, v ) ! Write out final configuration
CALL deallocate_arrays
CALL conclusion
CONTAINS
SUBROUTINE a_propagator ( t ) ! A propagator
IMPLICIT NONE
REAL, INTENT(in) :: t ! Time over which to propagate (typically dt/2)
REAL :: x
x = t * strain_rate ! Change in strain (dimensionless)
r(1,:) = r(1,:) + x * r(2,:) ! Extra strain term
r(:,:) = r(:,:) + t * v(:,:) / box ! Drift half-step (positions in box=1 units)
strain = strain + x ! Advance strain and hence boundaries
strain = strain - ANINT ( strain ) ! Keep strain within (-0.5,0.5)
r(1,:) = r(1,:) - ANINT ( r(2,:) ) * strain ! Extra PBC correction (box=1 units)
r(:,:) = r(:,:) - ANINT ( r(:,:) ) ! Periodic boundaries (box=1 units)
END SUBROUTINE a_propagator
SUBROUTINE b1_propagator ( t ) ! B1 propagator
IMPLICIT NONE
REAL, INTENT(in) :: t ! Time over which to propagate (typically dt/2)
REAL :: x, c1, c2, g
x = t * strain_rate ! Change in strain (dimensionless)
c1 = x * SUM ( v(1,:)*v(2,:) ) / SUM ( v(:,:)**2 )
c2 = ( x**2 ) * SUM ( v(2,:)**2 ) / SUM ( v(:,:)**2 )
g = 1.0 / SQRT ( 1.0 - 2.0*c1 + c2 )
v(1,:) = v(1,:) - x*v(2,:)
v(:,:) = g * v(:,:)
END SUBROUTINE b1_propagator
SUBROUTINE b2_propagator ( t ) ! B2 propagator
IMPLICIT NONE
REAL, INTENT(in) :: t ! Time over which to propagate (typically dt)
REAL :: alpha, beta, h, e, dt_factor, prefactor
alpha = SUM ( f(:,:)*v(:,:) ) / SUM ( v(:,:)**2 )
beta = SQRT ( SUM ( f(:,:)**2 ) / SUM ( v(:,:)**2 ) )
h = ( alpha + beta ) / ( alpha - beta )
e = EXP ( -beta * t )
dt_factor = ( 1 + h - e - h / e ) / ( ( 1 - h ) * beta )
prefactor = ( 1 - h ) / ( e - h / e )
v(:,:) = prefactor * ( v(:,:) + dt_factor * f(:,:) )
END SUBROUTINE b2_propagator
FUNCTION calc_variables ( ) RESULT ( variables )
USE averages_module, ONLY : variable_type, msd
IMPLICIT NONE
TYPE(variable_type), DIMENSION(6) :: variables ! The 6 variables listed below
! This routine calculates all variables of interest and (optionally) writes them out
! They are collected together in the variables array, for use in the main program
! In this example we simulate using a specified potential (e.g. WCA LJ)
! which goes to zero smoothly at the cutoff to highlight energy conservation
! so long-range corrections do not arise
TYPE(variable_type) :: e_s, p_s, t_k, t_c, eta, conserved_msd
REAL :: vol, rho, kin, fsq, tmp, kyx, eng
REAL, PARAMETER :: tol = 1.0e-6
! Preliminary calculations
vol = box**3 ! Volume
rho = REAL(n) / vol ! Density
kin = 0.5*SUM(v**2) ! NB v(:,:) are taken to be peculiar velocities
fsq = SUM(f**2) ! Total squared force
tmp = 2.0 * kin / REAL(3*n-3) ! Remove three degrees of freedom for momentum conservation
kyx = SUM(v(1,:)*v(2,:)) / vol ! Kinetic part of off-diagonal pressure tensor
eng = kin + total%pot ! Total energy
! Variables of interest, of type variable_type, containing three components:
! %val: the instantaneous value
! %nam: used for headings
! %method: indicating averaging method
! If not set below, %method adopts its default value of avg
! The %nam and some other components need only be defined once, at the start of the program,
! but for clarity and readability we assign all the values together below
! Internal energy per atom
! Total KE plus total PE divided by N
e_s = variable_type ( nam = 'E/N', val = eng/REAL(n) )
! Pressure
! Ideal gas contribution plus total virial divided by V
p_s = variable_type ( nam = 'P', val = rho*tmp + total%vir/vol )
! Kinetic temperature
t_k = variable_type ( nam = 'T kinetic', val = tmp )
! Configurational temperature
! Total squared force divided by total Laplacian
t_c = variable_type ( nam = 'T config', val = fsq/total%lap )
! Shear viscosity
IF ( ABS(strain_rate) < tol ) THEN ! Guard against simulation with zero strain rate
eta = variable_type ( nam = 'Shear viscosity', val = 0.0 )
ELSE
eta = variable_type ( nam = 'Shear viscosity', val = -( kyx+total%pyx/vol ) / strain_rate )
END IF
! MSD of conserved kinetic energy
conserved_msd = variable_type ( nam = 'Conserved MSD', val = kin/REAL(n), &
& method = msd, e_format = .TRUE., instant = .FALSE. )
! Collect together for averaging
variables = [ e_s, p_s, t_k, t_c, eta, conserved_msd ]
END FUNCTION calc_variables
END PROGRAM md_nvt_lj_le