forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmc_nvt_poly_lj.f90
245 lines (188 loc) · 11.6 KB
/
mc_nvt_poly_lj.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
! mc_nvt_poly_lj.f90
! Monte Carlo, NVT ensemble, polyatomic molecule
PROGRAM mc_nvt_poly_lj
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Takes in a configuration of polyatomic molecules (positions and quaternions)
! Cubic periodic boundary conditions
! Conducts Monte Carlo at the given temperature
! Uses no special neighbour lists
! Reads several variables and options from standard input using a namelist nml
! Leave namelist empty to accept supplied defaults
! Positions r are divided by box length after reading in
! However, input configuration, output configuration, most calculations, and all results
! are given in simulation units defined by the model
! For example, for Lennard-Jones, sigma = 1, epsilon = 1
! Despite the program name, there is nothing here specific to Lennard-Jones
! The model (including the cutoff distance) is defined in mc_module
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor
USE config_io_module, ONLY : read_cnf_mols, write_cnf_mols
USE averages_module, ONLY : run_begin, run_end, blk_begin, blk_end, blk_add
USE maths_module, ONLY : metropolis, random_rotate_quaternion, random_translate_vector, q_to_a
USE mc_module, ONLY : introduction, conclusion, allocate_arrays, deallocate_arrays, &
& potential_1, potential, n, na, db, r, e, d, potential_type
IMPLICIT NONE
! Most important variables
REAL :: box ! Box length
REAL :: dr_max ! Maximum MC translational displacement
REAL :: de_max ! Maximum MC rotational displacement
REAL :: temperature ! Specified temperature
! Composite interaction = pot & vir & ovr variables
TYPE(potential_type) :: total, partial_old, partial_new
INTEGER :: blk, stp, i, a, nstep, nblock, moves, ioerr
REAL :: delta, m_ratio
REAL, DIMENSION(3) :: ri
REAL, DIMENSION(0:3) :: ei
REAL, DIMENSION(3,3) :: ai
REAL, DIMENSION(na,3) :: di
CHARACTER(len=4), PARAMETER :: cnf_prefix = 'cnf.'
CHARACTER(len=3), PARAMETER :: inp_tag = 'inp'
CHARACTER(len=3), PARAMETER :: out_tag = 'out'
CHARACTER(len=3) :: sav_tag = 'sav' ! May be overwritten with block number
NAMELIST /nml/ nblock, nstep, temperature, dr_max, de_max
WRITE ( unit=output_unit, fmt='(a)' ) 'mc_nvt_poly_lj'
WRITE ( unit=output_unit, fmt='(a)' ) 'Monte Carlo, constant-NVT ensemble, polyatomic molecule'
CALL introduction
CALL RANDOM_SEED () ! Initialize random number generator
! Set sensible default run parameters for testing
nblock = 10
nstep = 20000
temperature = 1.0
dr_max = 0.05
de_max = 0.05
! Read run parameters from namelist
! Comment out, or replace, this section if you don't like namelists
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in mc_nvt_poly_lj'
END IF
! Write out run parameters
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of blocks', nblock
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps per block', nstep
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Temperature', temperature
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Maximum r displacement', dr_max
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Maximum e displacement', de_max
! Read in initial configuration and allocate necessary arrays
CALL read_cnf_mols ( cnf_prefix//inp_tag, n, box ) ! First call is just to get n and box
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of molecules', n
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Simulation box length', box
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Density of molecules', REAL(n) / box**3
CALL allocate_arrays ( box )
CALL read_cnf_mols ( cnf_prefix//inp_tag, n, box, r, e ) ! Second call is to get r and e
r(:,:) = r(:,:) / box ! Convert positions to box units
r(:,:) = r(:,:) - ANINT ( r(:,:) ) ! Periodic boundaries
! Calculate all bond vectors
DO i = 1, n ! Loop over molecules
ai = q_to_a ( e(:,i) ) ! Rotation matrix for i
DO a = 1, na ! Loop over all atoms
d(:,a,i) = MATMUL ( db(:,a), ai ) ! NB: equivalent to ai_T*db, ai_T=transpose of ai
END DO ! End loop over all atoms
END DO ! End loop over molecules
! Initial energy and overlap check
total = potential ( box )
IF ( total%ovr ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in initial configuration'
STOP 'Error in mc_nvt_poly_lj'
END IF
! Initialize arrays for averaging and write column headings
m_ratio = 0.0
CALL run_begin ( calc_variables() )
DO blk = 1, nblock ! Begin loop over blocks
CALL blk_begin
DO stp = 1, nstep ! Begin loop over steps
moves = 0
DO i = 1, n ! Begin loop over atoms
partial_old = potential_1 ( r(:,i), d(:,:,i), i, box ) ! Old molecule potential, virial, etc
IF ( partial_old%ovr ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in current configuration'
STOP 'Error in mc_nvt_poly_lj'
END IF
ri = random_translate_vector ( dr_max/box, r(:,i) ) ! Trial move to new position (in box=1 units)
ri = ri - ANINT ( ri ) ! Periodic boundary correction
ei = random_rotate_quaternion ( de_max, e(:,i) ) ! Trial rotation
ai = q_to_a ( ei ) ! Rotation matrix for i
DO a = 1, na ! Loop over all atoms
di(:,a) = MATMUL ( db(:,a), ai ) ! NB: equivalent to ai_T*db, ai_T=transpose of ai
END DO ! End loop over all atoms
partial_new = potential_1 ( ri, di, i, box ) ! New molecule potential, virial etc
IF ( .NOT. partial_new%ovr ) THEN ! Test for non-overlapping configuration
delta = partial_new%pot - partial_old%pot ! Use cut-and-shifted potential
delta = delta / temperature ! Divide by temperature
IF ( metropolis ( delta ) ) THEN ! Accept Metropolis test
total = total + partial_new - partial_old ! Update potential energy
r(:,i) = ri ! Update position
e(:,i) = ei ! Update quaternion
d(:,:,i) = di ! Update bond vectors
moves = moves + 1 ! Increment move counter
END IF ! End accept Metropolis test
END IF ! End test for non-overlapping configuration
END DO ! End loop over atoms
m_ratio = REAL(moves) / REAL(n)
! Calculate and accumulate variables for this step
CALL blk_add ( calc_variables() )
END DO ! End loop over steps
CALL blk_end ( blk ) ! Output block averages
IF ( nblock < 1000 ) WRITE(sav_tag,'(i3.3)') blk ! Number configuration by block
CALL write_cnf_mols ( cnf_prefix//sav_tag, n, box, r*box, e ) ! Save configuration
END DO ! End loop over blocks
CALL run_end ( calc_variables() ) ! Output run averages
CALL write_cnf_mols ( cnf_prefix//out_tag, n, box, r*box, e ) ! Write out final configuration
CALL deallocate_arrays
CALL conclusion
CONTAINS
FUNCTION calc_variables ( ) RESULT ( variables )
USE averages_module, ONLY : variable_type
IMPLICIT NONE
TYPE(variable_type), DIMENSION(3) :: variables ! The 3 variables listed below
! This routine calculates all variables of interest and (optionally) writes them out
! They are collected together in the variables array, for use in the main program
! In this example we simulate using the shifted-force potential only
! The values of < p_sf >, < e_sf > and density should be consistent (for this potential)
! There are no long-range or delta corrections
TYPE(variable_type) :: m_r, e_sf, p_sf
REAL :: vol, rho
! Preliminary calculations
vol = box**3 ! Volume
rho = REAL(n) / vol ! Density
! Variables of interest, of type variable_type, containing three components:
! %val: the instantaneous value
! %nam: used for headings
! %method: indicating averaging method
! If not set below, %method adopts its default value of avg
! The %nam and some other components need only be defined once, at the start of the program,
! but for clarity and readability we assign all the values together below
! Move acceptance ratio
m_r = variable_type ( nam = 'Move ratio', val = m_ratio, instant = .FALSE. )
! Internal energy per molecule (shifted-force potential)
! Ideal gas contribution (assuming nonlinear molecules) plus total PE divided by N
e_sf = variable_type ( nam = 'E/N shifted force', val = 3.0*temperature + total%pot/REAL(n) )
! Pressure (shifted-force potential)
! Ideal gas contribution plus total virial divided by V
p_sf = variable_type ( nam = 'P shifted force', val = rho*temperature + total%vir/vol )
! Collect together for averaging
variables = [ m_r, e_sf, p_sf ]
END FUNCTION calc_variables
END PROGRAM mc_nvt_poly_lj