forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmc_nvt_lj_re.f90
381 lines (296 loc) · 19.8 KB
/
mc_nvt_lj_re.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
! mc_nvt_lj_re.f90
! Monte Carlo, NVT ensemble, replica exchange
PROGRAM mc_nvt_lj_re
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Takes in a configuration of atoms (positions)
! Cubic periodic boundary conditions
! Conducts Monte Carlo at the given temperature
! Uses no special neighbour lists
! Uses MPI to run replica exchange of configurations with neighbouring temperatures
! Assume at most 100 processes numbered 0 to 99
! There are a couple of MPI-related points that need particular attention
! Firstly, it is assumed that this program is compiled with a compiler option such as "-fdefault-real-8"
! defining the precision of REAL variables. We set the parameter MY_MPI_REAL = MPI_DOUBLE_PRECISION
! to be compatible with this. Your implementation may require MY_MPI_REAL = MPI_REAL.
! Secondly, all processes write to their standard output, output_unit, but the default in MPI is for all this output
! to be collated (in an undefined order) and written to a single channel. We assume that the program
! will be run with a command-line which includes an option for each process to write to separate files, such as
! mpirun -np 8 -output-filename out ./mc_nvt_lj_re < mc.inp
! where the standard output files are named out##, the ## part being determined by the process rank.
! If your implementation does not have this option, you should edit the code to explicitly open a file for
! standard output, with a process-rank-dependent name, and associate the output_unit with it.
! Note that configurations are read, saved, and written to files named cnf##.inp etc
! NB a program intended for real-world application would be much more careful about
! closing down all the MPI processes cleanly in the event of an error on any one process.
! Reads several variables and options from standard input using a namelist nml
! Leave namelist empty to accept supplied defaults
! Positions r are divided by box length after reading in
! However, input configuration, output configuration, most calculations, and all results
! are given in simulation units defined by the model
! For example, for Lennard-Jones, sigma = 1, epsilon = 1
! Despite the program name, there is nothing here specific to Lennard-Jones
! The model is defined in mc_module
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor
USE config_io_module, ONLY : read_cnf_atoms, write_cnf_atoms
USE averages_module, ONLY : run_begin, run_end, blk_begin, blk_end, blk_add
USE maths_module, ONLY : init_random_seed, metropolis, random_translate_vector
USE mc_module, ONLY : introduction, conclusion, allocate_arrays, deallocate_arrays, &
& potential_1, potential, move, n, r, potential_type
USE mpi
IMPLICIT NONE
! Most important variables
REAL :: box ! Box length
REAL :: dr_max ! Maximum MC displacement
REAL :: temperature ! Specified temperature
REAL :: r_cut ! Potential cutoff distance
! Composite interaction = pot & vir & ovr variables
TYPE(potential_type) :: total, partial_old, partial_new
! Arrays holding values for all processes
REAL, DIMENSION(:), ALLOCATABLE :: every_temperature, every_beta, every_dr_max
LOGICAL :: swap, exists, all_exist
INTEGER :: blk, stp, i, nstep, nblock, moves, updown, ioerr
REAL :: beta, other_beta, other_pot, delta, zeta, m_ratio, x_ratio
REAL, DIMENSION(3) :: ri
CHARACTER(len=3), PARAMETER :: inp_tag = 'inp'
CHARACTER(len=3), PARAMETER :: out_tag = 'out'
CHARACTER(len=6) :: cnf_prefix = 'cnf##.' ! Will have rank inserted
CHARACTER(len=3) :: sav_tag = 'sav' ! May be overwritten with block number
CHARACTER(len=2) :: m_tag ! Will contain rank number
INTEGER :: m ! MPI process rank (id of this process)
INTEGER :: nproc ! MPI world size (number of processes)
INTEGER :: error ! MPI error return
INTEGER :: msg_error ! MPI error return
INTEGER, DIMENSION(MPI_STATUS_SIZE) :: msg_status ! MPI status return
INTEGER, PARAMETER :: msg1_id = 999 ! MPI message identifier
INTEGER, PARAMETER :: msg2_id = 888 ! MPI message identifier
INTEGER, PARAMETER :: msg3_id = 777 ! MPI message identifier
INTEGER, PARAMETER :: msg4_id = 666 ! MPI message identifier
INTEGER, PARAMETER :: MY_MPI_REAL = MPI_DOUBLE_PRECISION ! Specifies precision of MPI reals
NAMELIST /nml/ nblock, nstep, every_temperature, r_cut, every_dr_max
CALL MPI_Init ( error )
CALL MPI_Comm_rank ( MPI_COMM_WORLD, m, error )
CALL MPI_Comm_size ( MPI_COMM_WORLD, nproc, error )
IF ( nproc > 100 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Number of processes is too large', nproc
STOP 'Error in mc_nvt_lj_re'
END IF
WRITE(m_tag,fmt='(i2.2)') m ! Convert rank into character form
cnf_prefix(4:5) = m_tag ! Insert process rank into configuration filename
WRITE ( unit=output_unit, fmt='(a)' ) 'mc_nvt_lj_re'
WRITE ( unit=output_unit, fmt='(a)' ) 'Monte Carlo, constant-NVT, replica exchange'
WRITE ( unit=output_unit, fmt='(a)' ) 'Simulation uses cut (but not shifted) potential'
CALL introduction
WRITE( unit=output_unit, fmt='(a,t40,i15)') 'This is process rank', m
WRITE( unit=output_unit, fmt='(a,t40,i15)') 'Number of processes is', nproc
CALL init_random_seed () ! Initialize random number generator (hopefully differently on each process)
CALL RANDOM_NUMBER ( zeta )
WRITE( unit=output_unit, fmt='(a,t40,f15.6)') 'Random # (different for each process?)', zeta
! Allocate processor-dependent arrays
ALLOCATE ( every_temperature(0:nproc-1), every_beta(0:nproc-1), every_dr_max(0:nproc-1) )
! Set sensible default run parameters for testing
! Empirical choices for temperature and dr_max give approx 20% swap rate and 35-40% move rate for 256 LJ atoms
nblock = 10
nstep = 10000
r_cut = 2.5
every_temperature = [ ( 1.00*(1.14)**(i-1), i = 0, nproc-1 ) ]
every_dr_max = [ ( 0.15*(1.11)**(i-1), i = 0, nproc-1 ) ]
! Read run parameters from namelist
! Comment out, or replace, this section if you don't like namelists
IF ( m == 0 ) THEN ! Process 0 reads data from standard input
READ ( unit=input_unit, nml=nml, iostat=ioerr )
END IF
! Process 0 sends error outcome to all other processes (to allow check and clean failure)
CALL MPI_Bcast ( ioerr, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, msg_error )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
CALL MPI_Finalize ( msg_error )
STOP 'Error in mc_nvt_lj_re'
END IF
! Process 0 sends run parameters to all other processes
CALL MPI_Bcast ( nblock, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, msg_error )
CALL MPI_Bcast ( nstep, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, msg_error )
CALL MPI_Bcast ( r_cut, 1, MY_MPI_REAL, 0, MPI_COMM_WORLD, msg_error )
CALL MPI_Bcast ( every_temperature(0), nproc, MY_MPI_REAL, 0, MPI_COMM_WORLD, msg_error )
CALL MPI_Bcast ( every_dr_max(0), nproc, MY_MPI_REAL, 0, MPI_COMM_WORLD, msg_error )
every_beta = 1.0 / every_temperature ! All the inverse temperatures
temperature = every_temperature(m) ! Temperature for this process
dr_max = every_dr_max(m) ! Max displacement for this process
beta = every_beta(m) ! Inverse temperature for this process
! Write out run parameters
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of blocks', nblock
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps per block', nstep
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Temperature', temperature
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Potential cutoff distance', r_cut
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Maximum displacement', dr_max
! Read in initial configuration and allocate necessary arrays
INQUIRE ( file = cnf_prefix//inp_tag, exist = exists ) ! Check that our configuration file exists
CALL MPI_Allreduce ( exists, all_exist, 1, MPI_LOGICAL, MPI_LAND, MPI_COMM_WORLD, msg_error ) ! Combine results
IF ( .NOT. all_exist ) THEN ! This is a fairly likely error, so we check and allow clean failure
WRITE ( unit=error_unit, fmt='(a,2l15)') 'One or more configuration files do not exist', exists, all_exist
CALL MPI_Finalize ( msg_error )
STOP 'Error in mc_nvt_lj_re'
END IF
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box ) ! First call is just to get n and box
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of particles', n
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Simulation box length', box
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Density', REAL(n) / box**3
CALL allocate_arrays ( box, r_cut ) ! Allocate r
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box, r ) ! Second call is to get r
r(:,:) = r(:,:) / box ! Convert positions to box units
r(:,:) = r(:,:) - ANINT ( r(:,:) ) ! Periodic boundaries
! Initial energy and overlap check
total = potential ( box, r_cut )
IF ( total%ovr ) THEN
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in initial configuration'
STOP 'Error in mc_nvt_lj_re'
END IF
! Initialize arrays for averaging and write column headings
m_ratio = 0.0
x_ratio = 0.0
CALL run_begin ( calc_variables() )
DO blk = 1, nblock ! Begin loop over blocks
CALL blk_begin
DO stp = 1, nstep ! Begin loop over steps
moves = 0
DO i = 1, n ! Begin loop over atoms
partial_old = potential_1 ( r(:,i), i, box, r_cut ) ! Old atom potential, virial etc
IF ( partial_old%ovr ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a)') 'Overlap in current configuration'
STOP 'Error in mc_nvt_lj_re'
END IF
ri(:) = random_translate_vector ( dr_max/box, r(:,i) ) ! Trial move to new position (in box=1 units)
ri(:) = ri(:) - ANINT ( ri(:) ) ! Periodic boundary correction
partial_new = potential_1 ( ri, i, box, r_cut ) ! New atom potential, virial etc
IF ( .NOT. partial_new%ovr ) THEN ! Test for non-overlapping configuration
delta = partial_new%pot - partial_old%pot ! Use cut (but not shifted) potential
delta = delta / temperature
IF ( metropolis ( delta ) ) THEN ! Accept Metropolis test
total = total + partial_new - partial_old ! Update total values
CALL move ( i, ri ) ! Update position
moves = moves + 1 ! Increment move counter
END IF ! End accept Metropolis test
END IF ! End test for overlapping configuration
END DO ! End loop over atoms
m_ratio = REAL(moves) / REAL(n)
x_ratio = 0.0
DO updown = 0, 1 ! Loop to look one way then the other
IF ( MOD(m,2) == updown ) THEN ! Look up, partner is m+1
IF ( m+1 < nproc ) THEN ! Ensure partner exists
other_beta = every_beta(m+1) ! We already know the other beta
CALL MPI_Recv ( other_pot, 1, MY_MPI_REAL, m+1, msg1_id, &
& MPI_COMM_WORLD, msg_status, msg_error ) ! Receive pot from other process
delta = -(beta - other_beta) * ( total%pot - other_pot ) ! Delta for Metropolis decision
swap = metropolis ( delta ) ! Decision taken on this process
CALL MPI_Send ( swap, 1, MPI_LOGICAL, m+1, msg2_id, &
& MPI_COMM_WORLD, msg_error ) ! Send decision to other process
IF ( swap ) THEN ! Exchange configurations
CALL MPI_Sendrecv_replace ( r, 3*n, MY_MPI_REAL, m+1, msg3_id, m+1, msg4_id, &
& MPI_COMM_WORLD, msg_status, msg_error )
total = potential ( box, r_cut ) ! Alternatively, we could get this from m+1
x_ratio = 1.0
END IF ! End exchange configurations
END IF ! End ensure partner exists
ELSE ! Look down, partner is m-1
IF ( m-1 >= 0 ) THEN ! Ensure partner exists
CALL MPI_Send ( total%pot, 1, MY_MPI_REAL, m-1, msg1_id, &
& MPI_COMM_WORLD, msg_error ) ! Send pot to other process
CALL MPI_Recv ( swap, 1, MPI_LOGICAL, m-1, msg2_id, &
& MPI_COMM_WORLD, msg_status, msg_error ) ! Receive decision from other process
IF ( swap ) THEN ! Exchange configurations
CALL MPI_Sendrecv_replace ( r, 3*n, MY_MPI_REAL, m-1, msg4_id, m-1, msg3_id, &
& MPI_COMM_WORLD, msg_status, msg_error )
total = potential ( box, r_cut ) ! Alternatively, we could get this from m-1
END IF ! End exchange configurations
END IF ! End ensure partner exists
END IF ! End choice of which way to look
END DO ! End loop to look one way then the other
! Calculate and accumulate variables for this step
CALL blk_add ( calc_variables() )
END DO ! End loop over steps
CALL blk_end ( blk ) ! Output block averages
IF ( nblock < 1000 ) WRITE(sav_tag,fmt='(i3.3)') blk ! Number configuration by block
CALL write_cnf_atoms ( cnf_prefix//sav_tag, n, box, r*box ) ! Save configuration
END DO ! End loop over blocks
CALL run_end ( calc_variables() ) ! Output run averages
CALL write_cnf_atoms ( cnf_prefix//out_tag, n, box, r*box ) ! Write out final configuration
CALL deallocate_arrays
DEALLOCATE ( every_temperature, every_beta, every_dr_max )
CALL conclusion
CALL MPI_Finalize(error)
CONTAINS
FUNCTION calc_variables () RESULT ( variables )
USE lrc_module, ONLY : potential_lrc, pressure_lrc, pressure_delta
USE mc_module, ONLY : force_sq
USE averages_module, ONLY : variable_type, msd
IMPLICIT NONE
TYPE(variable_type), DIMENSION(8) :: variables ! The 8 variables listed below
! This routine calculates all variables of interest and (optionally) writes them out
! They are collected together in the variables array, for use in the main program
! In this example we simulate using the cut (but not shifted) potential
! The values of < p_c >, < e_c > and density should be consistent (for this potential)
! For comparison, long-range corrections are also applied to give
! estimates of < e_f > and < p_f > for the full (uncut) potential
! The value of the cut-and-shifted potential is not used, in this example
TYPE(variable_type) :: m_r, x_r, e_c, p_c, e_f, p_f, t_c, c_f
REAL :: vol, rho, fsq
! Preliminary calculations (m_ratio, total etc are known already)
vol = box**3 ! Volume
rho = REAL(n) / vol ! Density
fsq = force_sq ( box, r_cut ) ! Total squared force
! Variables of interest, of type variable_type, containing three components:
! %val: the instantaneous value
! %nam: used for headings
! %method: indicating averaging method
! If not set below, %method adopts its default value of avg
! The %nam and some other components need only be defined once, at the start of the program,
! but for clarity and readability we assign all the values together below
! Move and exchange acceptance ratios
m_r = variable_type ( nam = 'Move ratio', val = m_ratio, instant = .FALSE. )
x_r = variable_type ( nam = 'Swap ratio', val = x_ratio, instant = .FALSE. )
! Internal energy per atom for simulated, cut, potential
! Ideal gas contribution plus cut (but not shifted) PE divided by N
e_c = variable_type ( nam = 'E cut', val = 1.5*temperature + total%pot/REAL(n) )
! Internal energy per atom for full potential with LRC
! LRC plus ideal gas contribution plus cut (but not shifted) PE divided by N
e_f = variable_type ( nam = 'E full', val = potential_lrc(rho,r_cut) + 1.5*temperature + total%pot/REAL(n) )
! Pressure for simulated, cut, potential
! Delta correction plus ideal gas contribution plus total virial divided by V
p_c = variable_type ( nam = 'P cut', val = pressure_delta(rho,r_cut) + rho*temperature + total%vir/vol )
! Pressure for full potential with LRC
! LRC plus ideal gas contribution plus total virial divided by V
p_f = variable_type ( nam = 'P full', val = pressure_lrc(rho,r_cut) + rho*temperature + total%vir/vol )
! Configurational temperature
! Total squared force divided by total Laplacian
t_c = variable_type ( nam = 'T config', val = fsq/total%lap )
! Heat capacity (full)
! MSD potential energy divided by temperature and sqrt(N) to make result intensive; LRC does not contribute
! We add ideal gas contribution, 1.5, afterwards
c_f = variable_type ( nam = 'Cv/N full', val = total%pot/(temperature*SQRT(REAL(n))), &
& method = msd, add = 1.5, instant = .FALSE. )
! Collect together for averaging
variables = [ m_r, x_r, e_c, p_c, e_f, p_f, t_c, c_f ]
END FUNCTION calc_variables
END PROGRAM mc_nvt_lj_re