forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmc_chain_sw_module.f90
597 lines (449 loc) · 23.6 KB
/
mc_chain_sw_module.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
! mc_chain_sw_module.f90
! Monte Carlo, single chain, square wells
MODULE mc_module
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
USE, INTRINSIC :: iso_fortran_env, ONLY : output_unit, error_unit
IMPLICIT NONE
PRIVATE
! Public routines
PUBLIC :: introduction, conclusion, allocate_arrays, deallocate_arrays
PUBLIC :: regrow, crank, pivot, weight, qcount
! Public data
INTEGER, PUBLIC :: n ! Number of atoms
REAL, DIMENSION(:,:), ALLOCATABLE, PUBLIC :: r ! Atomic positions (3,n)
! Private data
REAL, DIMENSION(:,:), ALLOCATABLE :: r_old ! Working array (3,n)
REAL, DIMENSION(:,:), ALLOCATABLE :: r_new ! Working array (3,n)
REAL, PARAMETER :: sigma = 1.0 ! Core diameter
INTEGER, PARAMETER :: lt = -1, gt = 1 ! Options for j-range
CONTAINS
SUBROUTINE introduction
IMPLICIT NONE
WRITE ( unit=output_unit, fmt='(a)' ) 'Hard-sphere chain with fixed bond length'
WRITE ( unit=output_unit, fmt='(a)' ) 'Square-well attractive potential'
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Diameter, sigma = ', sigma
END SUBROUTINE introduction
SUBROUTINE conclusion
IMPLICIT NONE
WRITE ( unit=output_unit, fmt='(a)') 'Program ends'
END SUBROUTINE conclusion
SUBROUTINE allocate_arrays
IMPLICIT NONE
ALLOCATE ( r(3,n), r_old(3,n), r_new(3,n) )
END SUBROUTINE allocate_arrays
SUBROUTINE deallocate_arrays
IMPLICIT NONE
DEALLOCATE ( r, r_old, r_new )
END SUBROUTINE deallocate_arrays
SUBROUTINE regrow ( s, m_max, k_max, bond, range, q, accepted )
USE maths_module, ONLY : random_integer, random_vector, pick
IMPLICIT NONE
REAL, DIMENSION(0:), INTENT(in) :: s ! Entropy table used in accept function
INTEGER, INTENT(in) :: m_max ! Max atoms to regrow
INTEGER, INTENT(in) :: k_max ! Number of random tries per atom in regrow
REAL, INTENT(in) :: bond ! Bond length
REAL, INTENT(in) :: range ! Range of attractive well
INTEGER, INTENT(inout) :: q ! Energy, negative of (to be updated)
LOGICAL, INTENT(out) :: accepted ! Indicates success or failure of move
! This routine carries out a single regrowth move, modifying the array r
! It is assumed that q contains the (negative of the) energy on input
! and this is updated to give the new value, if the move is accepted, on return
! A short sequence of m atoms (m<=m_max) is deleted and regrown in the CBMC manner
! We randomly select which end of the chain to apply each of these operations to
! At each stage, k_max different atom positions are tried
! The bond length is fixed throughout
! Weights used in the regrowth are athermal, computed only on the basis of the
! hard-core overlap part of the non-bonded interactions: essentially they count non-overlaps
! Hence they are suitable for use in both NVT and Wang-Landau simulations
INTEGER :: q_old ! Old energy
INTEGER :: q_new ! New energy
REAL :: w_old ! Old weight
REAL :: w_new ! New weight
INTEGER :: m ! Number of atoms to regrow
INTEGER :: c ! Growth option
INTEGER :: k ! Try index
INTEGER, DIMENSION(k_max) :: w ! Rosenbluth weights (here integers, 0 or 1)
REAL, DIMENSION(3,k_max) :: r_try ! Coordinates of trial atoms
INTEGER :: i
REAL, DIMENSION(3) :: r1
REAL, PARAMETER :: w_tol = 0.5 ! Min weight tolerance (w takes integer values)
r_old = r ! Store old configuration
q_old = q ! Store old q
m = random_integer ( 1, m_max ) ! Number of atoms to regrow
c = random_integer ( 1, 4 ) ! Growth option
! PART 1: CONSTRUCT NEW CONFIGURATION WITH NEW WEIGHT
SELECT CASE ( c )
CASE ( 1 ) ! Remove from end and add to end
r(:,1:n-m) = r_old(:,1:n-m) ! Copy first n-m atoms
CASE ( 2 ) ! Remove from end and add to start
r(:,1:n-m) = r_old(:,n-m:1:-1) ! Copy and reverse first n-m atoms
CASE ( 3 ) ! Remove from start and add to start
r(:,1:n-m) = r_old(:,n:m+1:-1) ! Copy and reverse last n-m atoms
CASE ( 4 ) ! Remove from start and add to end
r(:,1:n-m) = r_old(:,m+1:n) ! Copy last n-m atoms
END SELECT
! Take the opportunity to place atom 1 at the origin
r1 = r(:,1)
r(:,1:n-m) = r(:,1:n-m) - SPREAD ( r1, dim=2, ncopies=n-m )
w_new = 1.0
DO i = n-m+1, n ! Loop to regrow last m atoms, computing new weight
DO k = 1, k_max ! Loop over k_max tries
r_try(:,k) = r(:,i-1) + bond * random_vector() ! Trial position in random direction from i-1
w(k) = weight_1 ( r_try(:,k), i, lt ) ! Store overlap weight for this try
END DO ! End loop over k_max tries
IF ( SUM(w) == 0 ) THEN ! Early exit if this happens at any stage
r = r_old ! Restore original configuration
q = q_old ! Redundant, but for clarity
accepted = .FALSE. ! No possible move: reject
RETURN
END IF
k = pick ( w ) ! Pick winning try according to weights
r(:,i) = r_try(:,k) ! Store winning position
w_new = w_new * REAL(SUM(w)) ! Accumulate total weight
END DO ! End loop to regrow last m atoms, computing new weight
IF ( w_new < w_tol ) THEN ! This should be a redundant test
r = r_old ! Restore original configuration
q = q_old ! Redundant, but for clarity
accepted = .FALSE. ! No possible move: reject
RETURN
END IF
q_new = qcount ( range ) ! Compute full new nonbonded energy
r_new = r ! Store new configuration
! END OF PART 1: NEW CONFIGURATION AND WEIGHT ARE COMPLETE
! PART 2: RECONSTRUCT OLD CONFIGURATION WITH OLD WEIGHT
SELECT CASE ( c )
CASE ( 1, 2 ) ! Remove and hence reconstruct at end
r = r_old(:,1:n) ! Copy all n atoms
CASE ( 3, 4 ) ! Remove and reconstruct at start
r = r_old(:,n:1:-1) ! Copy and reverse all n atoms
END SELECT
w_old = 1.0
DO i = n-m+1, n ! Loop to regrow last m atoms calculating old weight
! Old position and weight are stored as try 1
r_try(:,1) = r(:,i) ! Current position
w(1) = 1 ! Current weight must be 1
! Remaining tries only required to compute weight
DO k = 2, k_max ! Loop over k_max-1 other tries
r_try(:,k) = r(:,i-1) + bond * random_vector() ! Trial position in random direction from i-1
w(k) = weight_1 ( r_try(:,k), i, lt ) ! Store overlap weight for this try
END DO ! End loop over k_max-1 other tries
r(:,i) = r_try(:,1) ! Restore winning position (always the original one)
w_old = w_old * REAL(SUM(w)) ! Accumulate total weight
END DO ! End loop to regrow last m atoms calculating old weight
! END OF PART 2: OLD CONFIGURATION AND WEIGHT ARE COMPLETE
! Choose either old or new configuration
IF ( accept ( s, q_old, q_new, w_old, w_new ) ) THEN
r = r_new
q = q_new
accepted = .TRUE.
ELSE
r = r_old
q = q_old
accepted = .FALSE.
END IF
END SUBROUTINE regrow
SUBROUTINE pivot ( s, phi_max, range, q, accepted )
USE maths_module, ONLY : random_integer, random_vector, rotate_vector
IMPLICIT NONE
REAL, DIMENSION(0:), INTENT(in) :: s ! Entropy table used in accept function
REAL, INTENT(in) :: phi_max ! Maximum angle of pivot
REAL, INTENT(in) :: range ! Range of attractive well
INTEGER, INTENT(inout) :: q ! Energy, negative of (to be updated)
LOGICAL, INTENT(out) :: accepted ! Indicates success or failure of move
! This routine carries out a pivot move, modifying the array r
! It is assumed that q contains the (negative of the) energy on input
! and this is updated to give the new value, if the move is accepted, on return
! An atom is picked at random, and the part of the chain lying to one side of it
! is rotated as a whole, by a random angle, about a randomly oriented axis
! There are no weights to take into account in the acceptance/rejection decision
! (the function weight_1 is used simply to indicate overlap / no overlap)
INTEGER :: q_old ! Old energy
INTEGER :: q_new ! New energy
INTEGER :: j ! Index of pivot
REAL, DIMENSION(3) :: rj ! Position of pivot
REAL, DIMENSION(3) :: r1, rij, axis
INTEGER :: i, k
REAL :: zeta, phi
IF ( n < 3 ) THEN
accepted = .FALSE. ! Makes no sense to pivot such a short chain
RETURN ! Return immediately
END IF
r_old = r ! Store old configuration
q_old = q ! Store old q
k = random_integer ( 1, 2 ) ! Which part to pivot (actually redundant here)
SELECT CASE ( k )
CASE ( 1 )
r = r_old ! Copy atoms
CASE ( 2 )
r = r_old(:,n:1:-1) ! Copy and reverse atoms
END SELECT
! Take the opportunity to place atom 1 at the origin
r1 = r(:,1)
r(:,:) = r(:,:) - SPREAD ( r1, dim=2, ncopies=n )
j = random_integer ( 2, n-1 ) ! Pivot position (not at either end)
rj = r(:,j) ! Pivot point
DO i = 2, j ! Loop over static atoms, redundant but for roundoff
IF ( weight_1 ( r(:,i), i, lt ) == 0 ) THEN ! Check for overlaps
r = r_old ! Restore original configuration
q = q_old ! Redundant but for clarity
accepted = .FALSE. ! This move is rejected
RETURN
END IF ! End check for overlaps
END DO ! End loop over static atoms, redundant but for roundoff
! Pivot, and check for overlap in new configuration
! NB include overlap checks within rotated segment, because of roundoff
axis = random_vector () ! Pivot rotation axis
CALL RANDOM_NUMBER ( zeta ) ! Uniform random number in range (0,1)
phi = phi_max * ( 2.0*zeta - 1.0 ) ! Pivot rotation angle in desired range
DO i = j+1, n ! Loop over moving atoms
rij = r(:,i) - rj ! Relative vector of atom
rij = rotate_vector ( phi, axis, rij ) ! Rotate relative vector
r(:,i) = rj + rij ! New absolute position
IF ( weight_1 ( r(:,i), i, lt ) == 0 ) THEN ! Check for overlaps
r = r_old ! Restore original configuration
q = q_old ! Redundant but for clarity
accepted = .FALSE. ! This move is rejected
RETURN
END IF ! End check for overlaps
END DO ! End loop over moving atoms
q_new = qcount ( range ) ! Compute full new nonbonded energy
r_new = r ! Store new configuration
IF ( accept ( s, q_old, q_new ) ) THEN
r = r_new
q = q_new
accepted = .TRUE.
ELSE
r = r_old
q = q_old
accepted = .FALSE.
END IF
END SUBROUTINE pivot
SUBROUTINE crank ( s, phi_max, range, q, accepted )
USE maths_module, ONLY : random_integer, rotate_vector
IMPLICIT NONE
REAL, DIMENSION(0:), INTENT(in) :: s ! Entropy table used in accept function
REAL, INTENT(in) :: phi_max ! Maximum crank angle
REAL, INTENT(in) :: range ! Range of attractive well
INTEGER, INTENT(inout) :: q ! Energy, negative of (to be updated)
LOGICAL, INTENT(out) :: accepted ! Indicates success or failure of move
! This routine carries out a crankshaft move, modifying the array r
! It is assumed that q contains the (negative of the) energy on input
! and this is updated to give the new value, if the move is accepted, on return
! An atom is picked at random. Unless it is an end-atom, a rotation axis
! is defined as the line joining the two atoms on either side, and the
! chosen atom is rotated about that axis by a random angle.
! In the case of end-atoms, the axis is defined by the line joining its
! nearest and next-nearest neighbours.
! There are no weights to take into account in the acceptance/rejection decision
! (the function weight_1 is used simply to indicate overlap / no overlap)
INTEGER :: q_old ! Old energy
INTEGER :: q_new ! New energy
INTEGER :: i
REAL, DIMENSION(3) :: rj, rij, axis
REAL :: phi, zeta, norm
IF ( n < 3 ) THEN
accepted = .FALSE. ! Makes no sense to crank such a short chain
RETURN ! Return immediately
END IF
r_old = r ! Store old configuration
q_old = q ! Store old q
r = r_old ! Copy old position (somewhat redundant here)
i = random_integer ( 1, n ) ! Pick random atom to move
q_new = q_old - qcount_1 ( r(:,i), i, range ) ! Subtract old energies for moving atom
CALL RANDOM_NUMBER ( zeta ) ! Uniform random number in range (0,1)
phi = ( 2.0*zeta - 1.0 ) * phi_max ! Rotation angle in desired range
IF ( i == 1 ) THEN ! Rotate about 2--3 bond
axis = r(:,2) - r(:,3) ! axis of rotation
rj = r(:,2) ! reference position on axis
ELSE IF ( i == n ) THEN ! Rotate about (n-1)--(n-2) bond
axis = r(:,n-1) - r(:,n-2) ! axis of rotation
rj = r(:,n-1) ! reference position on axis
ELSE ! Rotate about (i-1)--(i+1) bond
axis = r(:,i+1) - r(:,i-1) ! axis of rotation
rj = r(:,i-1) ! reference position on axis
END IF
norm = SQRT(SUM(axis**2)) ! Squared length of rotation axis
axis = axis / norm ! Unit vector along rotation axis
rij = r(:,i) - rj ! Relative vector of atom
rij = rotate_vector ( phi, axis, rij ) ! Rotate relative vector
r(:,i) = rj + rij ! New absolute position
IF ( weight_1 ( r(:,i), i ) == 0 ) THEN ! Check for overlaps
r = r_old ! Restore original configuration
q = q_old ! Redundant but for clarity
accepted = .FALSE. ! This move is rejected
RETURN
END IF ! End check for overlaps
q_new = q_new + qcount_1 ( r(:,i), i, range ) ! Add new energies for moving atom
r_new = r
IF ( accept ( s, q_old, q_new ) ) THEN
r = r_new
q = q_new
accepted = .TRUE.
ELSE
r = r_old
q = q_old
accepted = .FALSE.
END IF
END SUBROUTINE crank
FUNCTION weight () RESULT ( w )
IMPLICIT NONE
INTEGER :: w ! Returns configuration weight = 0 (overlap) or 1 (no overlap)
! Arithmetically w is the product of all the pair Boltzmann factors
! Here, each is 0 or 1, which allows us to treat them as Boolean variables
! but in the more general case they would be real and we would multiply them all together
INTEGER :: i
w = 0 ! Weight is zero unless we get through the following loop
DO i = 1, n-1 ! Loop over atoms checking upwards for weight
IF ( weight_1 ( r(:,i), i, gt ) == 0 ) RETURN ! Overlap detected, no need to continue
END DO ! End loop over atoms checking upwards for weight
w = 1 ! No overlaps detected, so weight is one
END FUNCTION weight
FUNCTION weight_1 ( ri, i, j_range ) RESULT ( w )
IMPLICIT NONE
INTEGER :: w ! Returns weight (0 or 1) associated with single atom
REAL, DIMENSION(3), INTENT(in) :: ri ! Coordinates of atom of interest
INTEGER, INTENT(in) :: i ! Index of atom of interest
INTEGER, OPTIONAL, INTENT(in) :: j_range ! Partner index range
! Calculates weight associated with atom ri due to nonbonded interactions with other atoms
! The coordinates in ri are not necessarily identical with those in r(:,i)
! The optional argument j_range restricts partner indices to j>i, or j<i
! This is athermal, based on hard core nonbonded overlaps only
! The result is either 0 (overlap) or 1 (non overlap)
! Arithmetically w is the product of all the pair Boltzmann factors
! Here, each is 0 or 1, which allows us to treat them as Boolean variables
! but in the more general case they would be real and we would multiply them all together
INTEGER :: j, j1, j2
REAL, DIMENSION(3) :: rij
REAL :: rij_sq
IF ( PRESENT ( j_range ) ) THEN
SELECT CASE ( j_range )
CASE ( lt )
j1 = 1
j2 = i-1
CASE ( gt )
j1 = i+1
j2 = n
CASE default
WRITE ( unit = error_unit, fmt='(a,i10)') 'j_range error should never happen ', j_range
STOP 'Impossible error in weight_1'
END SELECT
ELSE
j1 = 1
j2 = n
END IF
w = 0 ! Weight is zero unless we get through the following loop
DO j = j1, j2 ! Loop over selected range of partners
IF ( ABS(j-i) <= 1 ) CYCLE ! Skip self and bonded neighbours
rij = ri(:) - r(:,j) ! Separation vector
rij_sq = SUM(rij**2) ! Squared separation
IF ( rij_sq < 1.0 ) RETURN ! Overlap detected, no need to continue
END DO ! End loop over selected range of partners
w = 1 ! No overlaps detected, so weight is one
END FUNCTION weight_1
FUNCTION qcount ( range ) RESULT ( q )
IMPLICIT NONE
INTEGER :: q ! Returns a count of all square-well interactions
REAL, INTENT(in) :: range ! Range of attractive well
! Actual calculation is performed by function qcount_1
INTEGER :: i
q = 0
DO i = 1, n-1 ! Loop over atoms, checking upwards for partners
q = q + qcount_1 ( r(:,i), i, range, gt )
END DO ! End loop over atoms, checking upwards for partners
END FUNCTION qcount
FUNCTION qcount_1 ( ri, i, range, j_range ) RESULT ( q )
IMPLICIT NONE
INTEGER :: q ! Returns a count of square-well interactions
REAL, DIMENSION(3), INTENT(in) :: ri ! Coordinates of atom of interest
INTEGER, INTENT(in) :: i ! Index of atom of interest
REAL, INTENT(in) :: range ! Range of attractive well
INTEGER, OPTIONAL, INTENT(in) :: j_range ! Optional partner index range
! Counts square-well interactions between specified atom and a set of other atoms
! The coordinates in ri are not necessarily identical with those in r(:,i)
! The optional argument j_range restricts partner indices to j>i, or j<i
INTEGER :: j, j1, j2
REAL, DIMENSION(3) :: rij
REAL :: rij_sq, range_sq
range_sq = range**2
IF ( PRESENT ( j_range ) ) THEN
SELECT CASE ( j_range )
CASE ( lt )
j1 = 1
j2 = i-1
CASE ( gt )
j1 = i+1
j2 = n
CASE default ! should never happen
WRITE ( unit = error_unit, fmt='(a,i10)') 'j_range error ', j_range
STOP 'Impossible error in qcount_1'
END SELECT
ELSE
j1 = 1
j2 = n
END IF
q = 0
DO j = j1, j2 ! Loop over selected range of partners
IF ( ABS(j-i) <= 1 ) CYCLE ! Skip self and bonded neighbours
rij = ri(:) - r(:,j) ! Separation vector
rij_sq = SUM(rij**2) ! Squared separation
IF ( rij_sq < range_sq ) q = q + 1 ! Accumulate if within range
END DO ! End loop over selected range of partners
END FUNCTION qcount_1
FUNCTION accept ( s, q_old, q_new, w_old, w_new )
USE maths_module, ONLY : metropolis
IMPLICIT NONE
LOGICAL :: accept ! Returns accept/reject decision based on
REAL, DIMENSION(0:), INTENT(in) :: s ! supplied entropy table,
INTEGER, INTENT(in) :: q_old, q_new ! old & new energies, and if present,
REAL, OPTIONAL, INTENT(in) :: w_old, w_new ! old & new weights
! This routine is essentially the Metropolis-Hastings formula, generalized
! to use a specified tabulated function of the energy in the exponent
! For NVT MC, s(q) is just E(q)/kT = -q/kT since energy is -q
! For Wang-Landau, s(q) is the entropy function, which is updated through the run
! In either case, weights (real, but taking positive integer values here) may optionally appear
INTEGER :: nq
REAL :: delta
REAL, PARAMETER :: w_tol = 0.5 ! Min weight tolerance (w takes integer values)
! Check that we are within bounds for the entropy table
nq = UBOUND(s,1)
IF ( q_new < 0 .OR. q_old < 0 .OR. q_new > nq .OR. q_old > nq ) THEN
WRITE ( unit = error_unit, fmt='(a,3i10)') 'q out of bounds ', q_new, q_old, nq
STOP 'nq error in accept'
END IF
delta = s(q_new) - s(q_old) ! Change in entropy function
IF ( PRESENT ( w_new ) ) THEN ! Inclusion of weights
IF ( w_old < w_tol ) THEN ! Should never happen
WRITE ( unit = error_unit, fmt='(a,es15.8)') 'w_old error ', w_old
STOP 'Impossible error in accept'
END IF
IF ( w_new < w_tol ) THEN ! Should really have been detected before
accept = .FALSE. ! This move is rejected
RETURN
END IF
! Equivalent to exp(-delta) -> (w_new/w_old)*exp(-delta)
delta = delta - LOG(w_new/w_old)
END IF ! End inclusion of weights
accept = metropolis ( delta )
END FUNCTION accept
END MODULE mc_module