forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrint_module.f90
237 lines (188 loc) · 8.4 KB
/
grint_module.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
! grint_module.f90
! Routines and data for grint program
MODULE grint_module
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
USE, INTRINSIC :: iso_fortran_env, ONLY : output_unit, error_unit
IMPLICIT NONE
PRIVATE
! Public routine
PUBLIC :: fit
CONTAINS
SUBROUTINE fit ( x, y, c, func, func_derivs, fail )
IMPLICIT NONE
REAL, DIMENSION(:), INTENT(in) :: x ! Abscissae (npts)
REAL, DIMENSION(:), INTENT(in) :: y ! Ordinates (npts)
REAL, DIMENSION(:), INTENT(inout) :: c ! Coefficients in fit (nterms)
LOGICAL, INTENT(out) :: fail ! Indicates success or failure of fit
INTERFACE
FUNCTION func ( x, c ) RESULT ( f )
IMPLICIT NONE
REAL :: f ! Returns fitting function
REAL, INTENT(in) :: x ! Abscissa
REAL, DIMENSION(:), INTENT(in) :: c ! Coefficients
END FUNCTION func
FUNCTION func_derivs ( x, c ) RESULT ( d )
IMPLICIT NONE
REAL, INTENT(in) :: x ! Abscissa
REAL, DIMENSION(:), INTENT(in) :: c ! Coefficients
REAL, DIMENSION(SIZE(c)) :: d ! Returns fitting function derivatives
END FUNCTION func_derivs
END INTERFACE
! This fitting routine traces its origins back to an early edition of
! "Data reduction and error analysis for the physical sciences" by PR Bevington,
! since when both the program and the book have evolved significantly
! Initial values for the coefficient array c must be provided.
REAL, DIMENSION(SIZE(c)) :: c_new, beta, dy, sigma
REAL, DIMENSION(SIZE(c),SIZE(c)) :: alpha, array
REAL, DIMENSION(SIZE(x)) :: yfit
INTEGER :: npts, nterms, nfree, i, j, k, t, iter
REAL :: lambda, chisq, chisq_red, chisq_old, change
REAL, PARAMETER :: tol = 1.e-6
LOGICAL, PARAMETER :: verbose = .FALSE. ! Controls output
npts = SIZE(x) ! Number of points
IF ( SIZE(y) /= npts ) THEN
WRITE ( unit=error_unit, fmt='(a,2i5)') 'Array dimensioning error', npts, SIZE(y)
STOP 'Error in fit'
END IF
nterms = SIZE(c) ! Number of terms in fitting function
nfree = npts - nterms
IF (nfree <= 0) THEN
WRITE ( unit=error_unit, fmt='(a,3i5)') 'Too few degrees of freedom', npts, nterms, nfree
STOP 'Error in fit'
END IF
iter = 0
DO i = 1,npts
yfit(i) = func(x(i),c)
END DO
chisq = SUM ( (y-yfit)**2 )
chisq_red = chisq / REAL(nfree)
! Write headings and initial values
IF ( verbose ) THEN
WRITE ( unit=output_unit, fmt='(a5)', advance='no' ) 'Iter'
DO t = 1, nterms
WRITE ( unit=output_unit, fmt='(a11,i1,a10,i1,a1)', advance='no' ) 'c', t, 'sigma(c', t, ')'
END DO
WRITE ( unit=output_unit, fmt='(3a12)' ) 'Red chisq', 'change', 'lambda'
WRITE ( unit=output_unit, fmt='(i5)', advance='no' ) iter
DO t = 1, nterms
WRITE ( unit=output_unit, fmt='(f12.6,12x)', advance='no' ) c(t)
END DO
WRITE ( unit=output_unit, fmt='(es12.2)' ) chisq_red
END IF
! Carry out fit
lambda = 0.001
DO ! Loop until change is below tol or failure to converge
iter = iter + 1
chisq_old = chisq_red
beta = 0.0
alpha = 0.0
DO i = 1, npts
dy = func_derivs(x(i),c)
DO j = 1, nterms
beta(j) = beta(j) + dy(j) * ( y(i) - yfit(i) )
DO k = 1, j
alpha(j,k) = alpha(j,k) + dy(j) * dy(k)
alpha(k,j) = alpha(j,k)
END DO
END DO
END DO
DO j = 1, nterms
DO k = 1, nterms
array(j,k) = alpha(j,k) / SQRT( alpha(j,j) * alpha(k,k) )
END DO
array(j,j) = 1.0 + lambda
END DO
CALL matinv ( array )
DO j = 1, nterms
DO k = 1, nterms
c(j) = c(j) + beta(k) * array(j,k) / SQRT ( alpha(j,j) * alpha(k,k) )
END DO
END DO
c_new = c
DO i = 1,npts
yfit(i) = func(x(i),c_new)
END DO
chisq = SUM ( (y-yfit)**2 )
chisq_red = chisq / REAL(nfree)
change = ( chisq_old - chisq_red ) / chisq_old
IF ( change > 0.0 ) THEN ! Better fit
c = c_new
FORALL ( t = 1:nterms ) sigma(t) = SQRT ( array(t,t) / alpha(t,t) )
IF ( verbose ) THEN
WRITE ( unit=output_unit, fmt='(i5)', advance='no' ) iter
DO t = 1, nterms
WRITE ( unit=output_unit, fmt='(2f12.6)', advance='no' ) c(t), sigma(t)
END DO
WRITE ( unit=output_unit, fmt='(3es12.2)' ) chisq_red, change, lambda
END IF
IF ( change < tol ) THEN ! Successful exit
fail = .FALSE.
EXIT
END IF
lambda = lambda/10.0 ! Improving: try again
ELSE ! Worse fit
IF ( lambda > 0.9 ) THEN ! Unsuccessful exit
IF ( verbose ) WRITE ( unit=output_unit, fmt='(a)') '*** NOT CONVERGED ***'
fail = .TRUE.
EXIT
ENDIF
lambda = lambda*10.0 ! Worsening: try again
END IF
END DO ! End loop until change below tol or failure to converge
END SUBROUTINE fit
SUBROUTINE matinv ( arr )
IMPLICIT NONE
REAL, DIMENSION(:,:), INTENT(inout) :: arr
! Invert matrix by Gauss method
REAL, DIMENSION(SIZE(arr,1),SIZE(arr,1)) :: a
REAL, DIMENSION(SIZE(arr,1)) :: temp
INTEGER, DIMENSION(SIZE(arr,1)) :: pivot
INTEGER :: i, j, k, m, n
REAL :: c, d
n = SIZE(arr,1)
IF ( n /= SIZE(arr,2) ) THEN
WRITE ( unit=error_unit, fmt='(a,2i5)') 'Array not square', n, SIZE(arr,2)
STOP 'Error in matinv'
END IF
a = arr ! Working copy
pivot = [ (i, i = 1, n) ]
DO k = 1, n
m = k - 1 + MAXLOC(ABS(a(k:n,k)),dim=1)
IF (m /= k) THEN
pivot([m,k]) = pivot([k,m]) ! Swap ( pivot(m), pivot(k) )
a([m,k],:) = a([k,m],:) ! Swap ( a(m,:), a(k,:) )
END IF
d = 1.0 / a(k,k)
temp = a(:,k)
DO j = 1, n
c = a(k,j)*d
a(:,j) = a(:,j)-temp*c
a(k,j) = c
END DO
a(:,k) = temp*(-d)
a(k,k) = d
END DO
arr(:,pivot) = a
END SUBROUTINE matinv
END MODULE grint_module