forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdpd.f90
252 lines (196 loc) · 11.4 KB
/
dpd.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
! dpd.f90
! Dissipative particle dynamics
PROGRAM dpd
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Takes in a configuration of atoms (positions, velocities)
! Cubic periodic boundary conditions
! Conducts dissipative particle dynamics using Shardlow or Lowe-Andersen algorithm
! Uses no special neighbour lists
! Reads several variables and options from standard input using a namelist nml
! Leave namelist empty to accept supplied defaults
! Positions r are divided by box length after reading in and we assume mass=1 throughout
! However, input configuration, output configuration, most calculations, and all results
! are given in simulation units defined by the model
! The range parameter (cutoff distance) is taken as unity
! The model is defined in dpd_module
! The typical DPD model described by Groot and Warren, J Chem Phys 107, 4423 (1997)
! has temperature kT=1, density rho=3, noise level sigma=3, gamma=sigma**2/(2*kT)=4.5
! and force strength parameter a=25 (more generally 75*kT/rho).
! We recommend a somewhat smaller timestep than their 0.04.
! They also give an approximate expression for the pressure, written out at the end for comparison
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor
USE config_io_module, ONLY : read_cnf_atoms, write_cnf_atoms
USE averages_module, ONLY : run_begin, run_end, blk_begin, blk_end, blk_add
USE maths_module, ONLY : lowercase
USE dpd_module, ONLY : introduction, conclusion, allocate_arrays, deallocate_arrays, &
& force, lowe, shardlow, p_approx, r, v, f, n, potential_type
IMPLICIT NONE
! Most important variables
REAL :: box ! Box length
REAL :: rho ! Density
REAL :: a ! Force strength parameter
REAL :: dt ! Time step
REAL :: gamma ! Thermalization rate (inverse time)
REAL :: temperature ! Temperature (specified)
! Composite interaction = pot & vir & lap variables
TYPE(potential_type) :: total
INTEGER :: blk, stp, nstep, nblock, ioerr
CHARACTER(len=4), PARAMETER :: cnf_prefix = 'cnf.'
CHARACTER(len=3), PARAMETER :: inp_tag = 'inp'
CHARACTER(len=3), PARAMETER :: out_tag = 'out'
CHARACTER(len=3) :: sav_tag = 'sav' ! May be overwritten with block number
CHARACTER(len=10) :: method
! Define a procedure pointer with an interface like that of lowe
PROCEDURE(lowe), POINTER :: thermalize => NULL()
NAMELIST /nml/ nblock, nstep, dt, temperature, a, gamma, method
WRITE ( unit=output_unit, fmt='(a)' ) 'dpd'
WRITE ( unit=output_unit, fmt='(a)' ) 'Dissipative particle dynamics, constant-NVT ensemble'
WRITE ( unit=output_unit, fmt='(a)' ) 'Particle mass=1 and cutoff=1 throughout'
CALL introduction
CALL RANDOM_SEED () ! Initialize random number generator
! Set sensible default run parameters for testing
nblock = 10
nstep = 10000
dt = 0.02
temperature = 1.0
a = 75.0 ! actually a*rho/kT: to be multiplied by kT/rho later
gamma = 4.5
method = 'Lowe'
! Read run parameters from namelist
! Comment out, or replace, this section if you don't like namelists
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in dpd'
END IF
! Write out run parameters
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of blocks', nblock
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps per block', nstep
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Time step', dt
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Specified temperature', temperature
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Force strength a*rho/kT', a
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Friction / thermal rate gamma', gamma
IF ( INDEX( lowercase(method), 'shardlow' ) /= 0 ) THEN
thermalize => shardlow
WRITE ( unit=output_unit, fmt='(a)' ) 'Shardlow integration method'
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'DPD sigma parameter', SQRT ( 2.0 * gamma * temperature )
ELSE IF ( INDEX( lowercase(method), 'lowe' ) /= 0 ) THEN
thermalize => lowe
WRITE ( unit=output_unit, fmt='(a)' ) 'Lowe thermalization method'
IF ( gamma*dt > 1.0 ) THEN
WRITE ( unit=error_unit, fmt='(a,f15.6)') 'gamma*dt too large', gamma*dt
STOP 'Error in dpd'
END IF
ELSE
WRITE ( unit=error_unit, fmt='(a,a)' ) 'Unrecognized thermalization method ', method
STOP 'Error in dpd'
END IF
! Read in initial configuration and allocate necessary arrays
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box ) ! First call is just to get n and box
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of particles', n
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Simulation box length', box
rho = REAL(n) / box**3
a = a * temperature / rho ! Scale force strength accordingly
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Density', rho
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Force strength a', a
CALL allocate_arrays ( box )
CALL read_cnf_atoms ( cnf_prefix//inp_tag, n, box, r, v ) ! Second call gets r and v
r(:,:) = r(:,:) / box ! Convert positions to box units
r(:,:) = r(:,:) - ANINT ( r(:,:) ) ! Periodic boundaries
! Initial energy etc
CALL force ( box, a, total )
! Initialize arrays for averaging and write column headings
CALL run_begin ( calc_variables() )
DO blk = 1, nblock ! Begin loop over blocks
CALL blk_begin
DO stp = 1, nstep ! Begin loop over steps
! Shardlow or Lowe-Andersen step
CALL thermalize ( box, temperature, gamma*dt )
! Velocity Verlet step
CALL kick_propagator ( dt/2.0 ) ! Kick half-step
CALL drift_propagator ( dt ) ! Drift step
CALL force ( box, a, total ) ! Force evaluation
CALL kick_propagator ( dt/2.0 ) ! Kick half-step
! Calculate and accumulate quantities for this step
CALL blk_add ( calc_variables() )
END DO ! End loop over steps
CALL blk_end ( blk ) ! Output block averages
IF ( nblock < 1000 ) WRITE(sav_tag,'(i3.3)') blk ! Number configuration by block
CALL write_cnf_atoms ( cnf_prefix//sav_tag, n, box, r*box, v ) ! Save configuration
END DO ! End loop over blocks
CALL run_end ( calc_variables() ) ! Output run averages
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Approx P = ', p_approx ( a, rho, temperature )
CALL write_cnf_atoms ( cnf_prefix//out_tag, n, box, r*box, v ) ! Write out final configuration
CALL deallocate_arrays
CALL conclusion
CONTAINS
SUBROUTINE kick_propagator ( t )
IMPLICIT NONE
REAL, INTENT(in) :: t ! Time over which to propagate (typically dt/2)
v(:,:) = v(:,:) + t * f(:,:)
END SUBROUTINE kick_propagator
SUBROUTINE drift_propagator ( t )
IMPLICIT NONE
REAL, INTENT(in) :: t ! Time over which to propagate (typically dt)
r(:,:) = r(:,:) + t * v(:,:) / box ! Positions in box=1 units
r(:,:) = r(:,:) - ANINT ( r(:,:) ) ! Periodic boundaries
END SUBROUTINE drift_propagator
FUNCTION calc_variables ( ) RESULT ( variables )
USE averages_module, ONLY : variable_type
IMPLICIT NONE
TYPE(variable_type), DIMENSION(4) :: variables ! The 4 variables listed below
! This function returns all variables of interest in an array, for use in the main program
! The DPD potential is short ranged, zero at, and beyond, r_cut
! so issues of shifted potentials and long-range corrections do not arise
TYPE(variable_type) :: p_f, e_f, t_k, t_c
REAL :: kin, fsq, vol
! Preliminary calculations
kin = 0.5*SUM(v**2) ! Total kinetic energy
fsq = SUM(f**2) ! Total squared force
vol = box**3 ! Volume
! Variables of interest, of type variable_type, containing three components:
! %val: the instantaneous value
! %nam: used for headings
! %method: indicating averaging method
! If not set below, %method adopts its default value of avg
! The %nam and some other components need only be defined once, at the start of the program,
! but for clarity and readability we assign all the values together below
! Kinetic temperature
! Momentum is conserved, hence 3N-3 degrees of freedom
t_k = variable_type ( nam = 'T kinetic', val = 2.0*kin/REAL(3*n-3) )
! Internal energy per atom
! Total KE plus total PE divided N
e_f = variable_type ( nam = 'E/N', val = (kin+total%pot)/REAL(n) )
! Pressure
! Ideal gas part plus total virial divided by V
p_f = variable_type ( nam = 'P', val = rho*temperature + total%vir/vol )
! Configurational temperature
! Total squared force divided by total Laplacian
t_c = variable_type ( nam = 'T config', val = fsq/total%lap )
! Collect together for averaging
variables = [ e_f, t_k, t_c, p_f ]
END FUNCTION calc_variables
END PROGRAM