forked from Allen-Tildesley/examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcorfun.f90
304 lines (239 loc) · 13.3 KB
/
corfun.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
! corfun.f90
! Time correlation function, directly and by FFT
PROGRAM corfun
!------------------------------------------------------------------------------------------------!
! This software was written in 2016/17 !
! by Michael P. Allen <[email protected]>/<[email protected]> !
! and Dominic J. Tildesley <[email protected]> ("the authors"), !
! to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), !
! published by Oxford University Press ("the publishers"). !
! !
! LICENCE !
! Creative Commons CC0 Public Domain Dedication. !
! To the extent possible under law, the authors have dedicated all copyright and related !
! and neighboring rights to this software to the PUBLIC domain worldwide. !
! This software is distributed without any warranty. !
! You should have received a copy of the CC0 Public Domain Dedication along with this software. !
! If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. !
! !
! DISCLAIMER !
! The authors and publishers make no warranties about the software, and disclaim liability !
! for all uses of the software, to the fullest extent permitted by applicable law. !
! The authors and publishers do not recommend use of this software for any purpose. !
! It is made freely available, solely to clarify points made in the text. When using or citing !
! the software, you should not imply endorsement by the authors or publishers. !
!------------------------------------------------------------------------------------------------!
! Define underlying process by generalized Langevin equation
! with memory function expressed as a decaying exponential function
! See G Ciccotti and JP Ryckaert Mol Phys 40 141 (1980)
! and AD Baczewski and SD Bond J Chem Phys 139 044107 (2013)
! We assume that the program is linked with the FFTW library (version 3)
! but it could easily be adapted to use a different library
! With older FFT routines it was necessary to transform a number of points = exact power of 2
! which, for us, would mean nstep = 2**j (for integer j) and fft_len=2*nstep
! This is no longer true, so we do not restrict nstep in this way,
! but the transform should be more efficient if nstep happens to take such values
! Advantage can be taken of the fact that the data is real, but for clarity
! we just use the complex FFT with imaginary parts of the data set to zero
USE, INTRINSIC :: iso_fortran_env, ONLY : input_unit, output_unit, error_unit, iostat_end, iostat_eor
USE, INTRINSIC :: iso_c_binding
USE maths_module, ONLY : random_normal
IMPLICIT NONE
INCLUDE 'fftw3.f03'
REAL :: m ! Memory function coefficients
REAL :: kappa ! Memory function decay rates
REAL :: s ! GLE auxiliary variables
REAL :: delta ! Time step
REAL :: vt ! Velocity at time t
REAL, DIMENSION(:), ALLOCATABLE :: v ! Stored velocities (nstep)
REAL, DIMENSION(:), ALLOCATABLE :: v0 ! Stored velocity origins (n0)
INTEGER, DIMENSION(:), ALLOCATABLE :: t0 ! Times of origins (n0)
REAL, DIMENSION(:), ALLOCATABLE :: c ! Velocity correlation function (direct method) (0:nt)
REAL, DIMENSION(:), ALLOCATABLE :: c_fft ! Velocity correlation function (FFT method) (0:nt)
REAL, DIMENSION(:), ALLOCATABLE :: n ! Normalizing function (0:nt)
INTEGER :: nt ! Number of timesteps to correlate
INTEGER :: nstep ! Number of timesteps in run
INTEGER :: nequil ! Number of equilibration timesteps
INTEGER :: n0 ! Number of time origins to store
INTEGER :: origin_interval ! Interval for time origins
INTEGER :: dt ! Time difference
INTEGER :: t ! Time (equivalent to step number in file)
LOGICAL :: full
INTEGER :: k, mk, nk
INTEGER :: unit, ioerr
REAL :: temperature, stddev, x, e, b, d
REAL :: cpu_1, cpu_2, cpu_3, cpu_4
INTEGER(C_INT) :: fft_len ! the number of points for FFT
COMPLEX(C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE :: fft_inp ! data to be transformed (0:fft_len-1)
COMPLEX(C_DOUBLE_COMPLEX), DIMENSION(:), ALLOCATABLE :: fft_out ! data to be transformed (0:fft_len-1)
TYPE(C_PTR) :: fft_plan ! plan needed for FFTW
! Taylor series coefficients
REAL, PARAMETER :: b1 = 2.0, b2 = -2.0, b3 = 4.0/3.0, b4 = -2.0/3.0 ! b = 1.0 - EXP(-2.0*x)
REAL, PARAMETER :: d1 = 1.0, d2 = -1.0/2.0, d3 = 1.0/6.0, d4 = -1.0/24.0 ! d = 1.0 - EXP(-x)
NAMELIST /nml/ nt, origin_interval, nstep, nequil, delta, temperature
WRITE( unit=output_unit, fmt='(a)' ) 'corfun'
WRITE( unit=output_unit, fmt='(a)' ) 'Illustrates methods for calculating time correlation functions'
WRITE( unit=output_unit, fmt='(a)' ) 'using synthetic data from a generalized Langevin equation'
CALL RANDOM_SEED () ! Initialize random number generator
! Example default values
! Agreement (to numerical precision) of direct and FFT methods is expected if origin_interval=1
nt = 1000 ! Max time for correlation function
origin_interval = 1 ! This could reasonably be increased to 10 or 20 to improve efficiency
nstep = 2**20 ! Number of steps, about a million for example
nequil = 10000 ! Number of equilibration timesteps
delta = 0.01 ! Timestep for simulation
temperature = 1.0 ! Temperature for simulation
! Namelist from standard input
READ ( unit=input_unit, nml=nml, iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error reading namelist nml from standard input', ioerr
IF ( ioerr == iostat_eor ) WRITE ( unit=error_unit, fmt='(a)') 'End of record'
IF ( ioerr == iostat_end ) WRITE ( unit=error_unit, fmt='(a)') 'End of file'
STOP 'Error in corfun'
END IF
n0 = nt / origin_interval + 1
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of steps in run = ', nstep
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Equilibration steps = ', nequil
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Max correlation time nt = ', nt
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Origin interval = ', origin_interval
WRITE ( unit=output_unit, fmt='(a,t40,i15)' ) 'Number of time origins n0 = ', n0
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Time step delta = ', delta
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'Temperature = ', temperature
ALLOCATE ( v(nstep), v0(n0), t0(n0) )
ALLOCATE ( c(0:nt), c_fft(0:nt), n(0:nt) )
fft_len = 2*nstep ! Actual length of FFT data
ALLOCATE ( fft_inp(0:fft_len-1), fft_out(0:fft_len-1) )
! The memory function model is defined here
! Values used by Baczewski and Bond in their example are
! (m,kappa)
! (1.0,1.0) (underdamped)
! (0.5,2.0) (critically damped)
! (0.25,4.0) (overdamped)
m = 1.0
kappa = 1.0
WRITE ( unit=output_unit, fmt='(a,t40,*(f15.6))' ) 'm = ', m
WRITE ( unit=output_unit, fmt='(a,t40,*(f15.6))' ) 'kappa = ', kappa
! Coefficients used in algorithm
x = delta*kappa
e = EXP(-x) ! theta in B&B paper
IF ( x > 0.0001 ) THEN
b = 1.0 - EXP(-2.0*x)
d = 1.0 - EXP(-x)
ELSE ! Taylor expansions for low x
b = x * ( b1 + x * ( b2 + x * ( b3 + x * b4 ) ) )
d = x * ( d1 + x * ( d2 + x * ( d3 + x * d4 ) ) )
END IF
b = SQRT ( b )
b = b * SQRT ( kappa/2.0 ) ! alpha in B&B paper
stddev = SQRT(2.0*temperature)
! Data generation
CALL CPU_TIME ( cpu_1 )
! Initial values
vt = 0.0
s = 0.0
DO t = -nequil, nstep ! Loop over steps including an equilibration period
! Velocity Verlet type algorithm for vt and auxiliary variable s
vt = vt + 0.5 * delta * s
s = e * s - d * m * vt + b * SQRT(m) * random_normal ( 0.0, stddev )
vt = vt + 0.5*delta*s
IF ( t > 0 ) v(t) = vt ! Store velocities, after equilibration
END DO ! End loop over steps including an equilibration period
CALL CPU_TIME ( cpu_2 )
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'CPU time to generate data = ', cpu_2-cpu_1
! Data analysis (direct method)
c(:) = 0.0
n(:) = 0.0
mk = 0 ! Storage location of time origin
full = .FALSE.
DO t = 1, nstep ! Main loop correlating data
IF ( MOD(t-1,origin_interval) == 0 ) THEN
mk = mk + 1
IF ( mk > n0 ) THEN
full = .TRUE.
mk = mk - n0 ! Overwrite older values
END IF
t0(mk) = t ! Store time origins
v0(mk) = v(t) ! Store velocity at time origins
END IF
IF ( full ) THEN
nk = n0 ! Correlate with all stored time origins
ELSE
nk = mk ! Correlate with those stored so far
END IF
DO k = 1, nk ! Loop over time origins
dt = t - t0(k)
IF ( dt >= 0 .AND. dt <= nt ) THEN ! Check that dt is in range
c(dt) = c(dt) + v(t) * v0(k) ! Increment correlation function
n(dt) = n(dt) + 1.0 ! Increment normalizing factor
END IF ! End check that dt is in range
END DO ! End loop over time origins
END DO ! End main loop correlating data
IF ( ANY ( n(:) < 0.5 ) ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a)') 'Normalization array error'
STOP 'Error in corfun'
END IF
c(:) = c(:) / n(:) ! Normalise by number of increments
CALL CPU_TIME ( cpu_3 )
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'CPU time for direct method = ', cpu_3-cpu_2
! Data analysis (FFT method)
! Prepare data for FFT
fft_inp = CMPLX(0.0) ! Fill input array with zeros
fft_inp(0:nstep-1) = CMPLX(v) ! Put data into first part (real only)
! Forward FFT
fft_plan = fftw_plan_dft_1d ( fft_len, fft_inp, fft_out, FFTW_FORWARD, FFTW_ESTIMATE) ! Set up plan
CALL fftw_execute_dft ( fft_plan, fft_inp, fft_out ) ! Execute FFT
CALL fftw_destroy_plan ( fft_plan ) ! Release plan
fft_out = fft_out * CONJG ( fft_out ) ! Square modulus
! Reverse FFT
fft_plan = fftw_plan_dft_1d ( fft_len, fft_out, fft_inp, FFTW_BACKWARD, FFTW_ESTIMATE) ! Set up plan
CALL fftw_execute_dft ( fft_plan, fft_out, fft_inp ) ! Execute FFT
CALL fftw_destroy_plan ( fft_plan ) ! Release plan
fft_inp = fft_inp / REAL ( fft_len ) ! Normalization factor associated with FFT itself
n(:) = [ ( nstep-t, t = 0, nt ) ] ! Normalization factors associated with number of time origins
IF ( ANY ( n(:) < 0.5 ) ) THEN ! should never happen
WRITE ( unit=error_unit, fmt='(a)') 'Normalization array error'
STOP 'Error in corfun'
END IF
c_fft = REAL ( fft_inp(0:nt) ) / n(:) ! Apply normalization associated with number of time origins
CALL CPU_TIME ( cpu_4 )
WRITE ( unit=output_unit, fmt='(a,t40,f15.6)' ) 'CPU time for FFT method = ', cpu_4-cpu_3
WRITE ( unit=output_unit, fmt='(a)' ) 'Output to corfun.out'
OPEN ( newunit=unit, file='corfun.out', status='replace', iostat=ioerr )
IF ( ioerr /= 0 ) THEN
WRITE ( unit=error_unit, fmt='(a,i15)') 'Error opening file', ioerr
STOP 'Error in corfun'
END IF
DO t = 0, nt
WRITE ( unit=unit, fmt='(i10,3f15.8)' ) t, c(t), c_fft(t), c_exact(t*delta)
END DO
CLOSE(unit=unit)
DEALLOCATE ( v, v0, t0, c, c_fft, n )
DEALLOCATE ( fft_inp, fft_out )
CONTAINS
FUNCTION c_exact ( t ) RESULT ( c )
IMPLICIT NONE
REAL :: c ! Returns analytically known correlation function, for
REAL, INTENT(in) :: t ! given time
! See AD Baczewski and SD Bond J Chem Phys 139 044107 (2013)
! In general the exact correlation function may be obtained from the inverse Laplace transform
! C(s) = (kT/m) * 1 / ( s + M(s) ) where both C(t) and M(t) are sums of exponentials in t
! M(s) = sum_p m_p*kappa_p / (s+kappa_p) p = 1..Np (note amplitude mp*kappa_p)
! C(s) = sum_p c_p / (s+k_p) p = 1..Np+1
! The coefficients c_p and k_p may be determined in terms of the m_p and kappa_p
! by solving an equation of order Np+1 and using partial fractions
! Here we just do this for the simplest case Np=1
! Agreement with the simulated function is only expected to within statistical error
REAL :: del, omega, kp, km, cp, cm
IF ( kappa > 4.0 * m ) THEN ! Real roots
del = SQRT ( 0.25*kappa**2 - m*kappa )
kp = 0.5*kappa + del
km = 0.5*kappa - del
cp = -km/(kp-km)
cm = kp/(kp-km)
c = cp*EXP(-kp*t) + cm*EXP(-km*t)
ELSE ! Complex roots
omega = SQRT ( m*kappa - 0.25*kappa**2 )
c = EXP(-0.5*kappa*t) * ( COS(omega*t) + (0.5*kappa/omega)*SIN(omega*t) )
END IF
END FUNCTION c_exact
END PROGRAM corfun