-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab_plots.py
102 lines (83 loc) · 3.84 KB
/
lab_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# python test_sweep.py --gpu_ids -1 --name siggraph_retrained --data_dir /Users/Will/Documents/Uni/MscEdinburgh/Diss/colorization-pytorch/dataset/SUN2012/ --checkpoints_dir /Users/Will/Documents/Uni/MscEdinburgh/Diss/checkpoints_from_pd/
import os
from options.train_options import TrainOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import save_images
from util import html
import random
import torch
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from torch.autograd import Variable
from util import util
from IPython import embed
import numpy as np
import progressbar as pb
import shutil
import datetime as dt
import matplotlib.pyplot as plt
if __name__ == '__main__':
opt = TrainOptions().parse()
opt.load_model = True
opt.num_threads = 1 # test code only supports num_threads = 1
opt.batch_size = 1 # test code only supports batch_size = 1
opt.display_id = -1 # no visdom display
opt.phase = 'test'
# opt.dataroot = '/Users/Will/Documents/Uni/MscEdinburgh/Diss/colorization-pytorch/dataset/SUN2012/%s/' % opt.phase
opt.dataroot = os.path.join(opt.data_dir, opt.phase)
# opt.dataroot = './dataset/ilsvrc2012/%s/' % opt.phase
opt.loadSize = 256
opt.how_many = 1000
opt.aspect_ratio = 1.0
opt.sample_Ps = [6,]
opt.load_model = True
if opt.plot_data_gen:
np.random.seed(5)
torch.manual_seed(5)
random.seed(5)
# number of random points to assign
num_points = np.round(10**np.arange(-.1, 2.8, .1))
num_points[0] = 0
num_points = np.unique(num_points.astype('int'))
N = len(num_points)
if not opt.load_sweep:
if opt.resize_test:
dataset = torchvision.datasets.ImageFolder(opt.dataroot,
transform=transforms.Compose([
transforms.Resize((opt.loadSize, opt.loadSize)),
transforms.ToTensor()]))
dataset_loader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=not opt.serial_batches)
model = create_model(opt)
model.setup(opt)
model.eval()
time = dt.datetime.now()
str_now = '%02d_%02d_%02d%02d' % (time.month, time.day, time.hour, time.minute)
model_path = os.path.join(opt.checkpoints_dir, '%s/latest_net_G.pth' % opt.name)
model_backup_path = os.path.join(opt.checkpoints_dir, '%s/%s_net_G.pth' % (opt.name, str_now))
# print('mp', model_path)
# print('./checkpoints/%s/latest_net_G.pth' % opt.name)
shutil.copyfile(model_path, model_backup_path)
psnrs = np.zeros((opt.how_many, N))
if opt.weighted_mask:
opt.sample_Ps = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, ]
bar = pb.ProgressBar(max_value=opt.how_many)
for i, data_raw in enumerate(dataset_loader):
if len(opt.gpu_ids) > 0:
data_raw[0] = data_raw[0].cuda()
data_raw[0] = util.crop_mult(data_raw[0], mult=8)
for nn in range(1):
# embed()
data = util.get_colorization_data(data_raw, opt, ab_thresh=0., num_points=num_points[nn])
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
real = util.tensor2im(visuals['real'])
fake_reg = util.tensor2im(visuals['fake_reg'])
if opt.plot_data_gen:
# util.plot_data_results(data, real, fake_reg, opt)
util.plot_lab_example(data, real, fake_reg, i, opt)
print('nn', nn)