-
Notifications
You must be signed in to change notification settings - Fork 620
/
Copy pathreplay_buffer.py
373 lines (327 loc) · 14.4 KB
/
replay_buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import copy
import time
import numpy
import ray
import torch
import models
@ray.remote
class ReplayBuffer:
"""
Class which run in a dedicated thread to store played games and generate batch.
"""
def __init__(self, initial_checkpoint, initial_buffer, config):
self.config = config
self.buffer = copy.deepcopy(initial_buffer)
self.num_played_games = initial_checkpoint["num_played_games"]
self.num_played_steps = initial_checkpoint["num_played_steps"]
self.total_samples = sum(
[len(game_history.root_values) for game_history in self.buffer.values()]
)
if self.total_samples != 0:
print(
f"Replay buffer initialized with {self.total_samples} samples ({self.num_played_games} games).\n"
)
# Fix random generator seed
numpy.random.seed(self.config.seed)
def save_game(self, game_history, shared_storage=None):
if self.config.PER:
if game_history.priorities is not None:
# Avoid read only array when loading replay buffer from disk
game_history.priorities = numpy.copy(game_history.priorities)
else:
# Initial priorities for the prioritized replay (See paper appendix Training)
priorities = []
for i, root_value in enumerate(game_history.root_values):
priority = (
numpy.abs(
root_value - self.compute_target_value(game_history, i)
)
** self.config.PER_alpha
)
priorities.append(priority)
game_history.priorities = numpy.array(priorities, dtype="float32")
game_history.game_priority = numpy.max(game_history.priorities)
self.buffer[self.num_played_games] = game_history
self.num_played_games += 1
self.num_played_steps += len(game_history.root_values)
self.total_samples += len(game_history.root_values)
if self.config.replay_buffer_size < len(self.buffer):
del_id = self.num_played_games - len(self.buffer)
self.total_samples -= len(self.buffer[del_id].root_values)
del self.buffer[del_id]
if shared_storage:
shared_storage.set_info.remote("num_played_games", self.num_played_games)
shared_storage.set_info.remote("num_played_steps", self.num_played_steps)
def get_buffer(self):
return self.buffer
def get_batch(self):
(
index_batch,
observation_batch,
action_batch,
reward_batch,
value_batch,
policy_batch,
gradient_scale_batch,
) = ([], [], [], [], [], [], [])
weight_batch = [] if self.config.PER else None
for game_id, game_history, game_prob in self.sample_n_games(
self.config.batch_size
):
game_pos, pos_prob = self.sample_position(game_history)
values, rewards, policies, actions = self.make_target(
game_history, game_pos
)
index_batch.append([game_id, game_pos])
observation_batch.append(
game_history.get_stacked_observations(
game_pos,
self.config.stacked_observations,
len(self.config.action_space),
)
)
action_batch.append(actions)
value_batch.append(values)
reward_batch.append(rewards)
policy_batch.append(policies)
gradient_scale_batch.append(
[
min(
self.config.num_unroll_steps,
len(game_history.action_history) - game_pos,
)
]
* len(actions)
)
if self.config.PER:
weight_batch.append(1 / (self.total_samples * game_prob * pos_prob))
if self.config.PER:
weight_batch = numpy.array(weight_batch, dtype="float32") / max(
weight_batch
)
# observation_batch: batch, channels, height, width
# action_batch: batch, num_unroll_steps+1
# value_batch: batch, num_unroll_steps+1
# reward_batch: batch, num_unroll_steps+1
# policy_batch: batch, num_unroll_steps+1, len(action_space)
# weight_batch: batch
# gradient_scale_batch: batch, num_unroll_steps+1
return (
index_batch,
(
observation_batch,
action_batch,
value_batch,
reward_batch,
policy_batch,
weight_batch,
gradient_scale_batch,
),
)
def sample_game(self, force_uniform=False):
"""
Sample game from buffer either uniformly or according to some priority.
See paper appendix Training.
"""
game_prob = None
if self.config.PER and not force_uniform:
game_probs = numpy.array(
[game_history.game_priority for game_history in self.buffer.values()],
dtype="float32",
)
game_probs /= numpy.sum(game_probs)
game_index = numpy.random.choice(len(self.buffer), p=game_probs)
game_prob = game_probs[game_index]
else:
game_index = numpy.random.choice(len(self.buffer))
game_id = self.num_played_games - len(self.buffer) + game_index
return game_id, self.buffer[game_id], game_prob
def sample_n_games(self, n_games, force_uniform=False):
if self.config.PER and not force_uniform:
game_id_list = []
game_probs = []
for game_id, game_history in self.buffer.items():
game_id_list.append(game_id)
game_probs.append(game_history.game_priority)
game_probs = numpy.array(game_probs, dtype="float32")
game_probs /= numpy.sum(game_probs)
game_prob_dict = dict(
[(game_id, prob) for game_id, prob in zip(game_id_list, game_probs)]
)
selected_games = numpy.random.choice(game_id_list, n_games, p=game_probs)
else:
selected_games = numpy.random.choice(list(self.buffer.keys()), n_games)
game_prob_dict = {}
ret = [
(game_id, self.buffer[game_id], game_prob_dict.get(game_id))
for game_id in selected_games
]
return ret
def sample_position(self, game_history, force_uniform=False):
"""
Sample position from game either uniformly or according to some priority.
See paper appendix Training.
"""
position_prob = None
if self.config.PER and not force_uniform:
position_probs = game_history.priorities / sum(game_history.priorities)
position_index = numpy.random.choice(len(position_probs), p=position_probs)
position_prob = position_probs[position_index]
else:
position_index = numpy.random.choice(len(game_history.root_values))
return position_index, position_prob
def update_game_history(self, game_id, game_history):
# The element could have been removed since its selection and update
if next(iter(self.buffer)) <= game_id:
if self.config.PER:
# Avoid read only array when loading replay buffer from disk
game_history.priorities = numpy.copy(game_history.priorities)
self.buffer[game_id] = game_history
def update_priorities(self, priorities, index_info):
"""
Update game and position priorities with priorities calculated during the training.
See Distributed Prioritized Experience Replay https://arxiv.org/abs/1803.00933
"""
for i in range(len(index_info)):
game_id, game_pos = index_info[i]
# The element could have been removed since its selection and training
if next(iter(self.buffer)) <= game_id:
# Update position priorities
priority = priorities[i, :]
start_index = game_pos
end_index = min(
game_pos + len(priority), len(self.buffer[game_id].priorities)
)
self.buffer[game_id].priorities[start_index:end_index] = priority[
: end_index - start_index
]
# Update game priorities
self.buffer[game_id].game_priority = numpy.max(
self.buffer[game_id].priorities
)
def compute_target_value(self, game_history, index):
# The value target is the discounted root value of the search tree td_steps into the
# future, plus the discounted sum of all rewards until then.
bootstrap_index = index + self.config.td_steps
if bootstrap_index < len(game_history.root_values):
root_values = (
game_history.root_values
if game_history.reanalysed_predicted_root_values is None
else game_history.reanalysed_predicted_root_values
)
last_step_value = (
root_values[bootstrap_index]
if game_history.to_play_history[bootstrap_index]
== game_history.to_play_history[index]
else -root_values[bootstrap_index]
)
value = last_step_value * self.config.discount**self.config.td_steps
else:
value = 0
for i, reward in enumerate(
game_history.reward_history[index + 1 : bootstrap_index + 1]
):
# The value is oriented from the perspective of the current player
value += (
reward
if game_history.to_play_history[index]
== game_history.to_play_history[index + i]
else -reward
) * self.config.discount**i
return value
def make_target(self, game_history, state_index):
"""
Generate targets for every unroll steps.
"""
target_values, target_rewards, target_policies, actions = [], [], [], []
for current_index in range(
state_index, state_index + self.config.num_unroll_steps + 1
):
value = self.compute_target_value(game_history, current_index)
if current_index < len(game_history.root_values):
target_values.append(value)
target_rewards.append(game_history.reward_history[current_index])
target_policies.append(game_history.child_visits[current_index])
actions.append(game_history.action_history[current_index])
elif current_index == len(game_history.root_values):
target_values.append(0)
target_rewards.append(game_history.reward_history[current_index])
# Uniform policy
target_policies.append(
[
1 / len(game_history.child_visits[0])
for _ in range(len(game_history.child_visits[0]))
]
)
actions.append(game_history.action_history[current_index])
else:
# States past the end of games are treated as absorbing states
target_values.append(0)
target_rewards.append(0)
# Uniform policy
target_policies.append(
[
1 / len(game_history.child_visits[0])
for _ in range(len(game_history.child_visits[0]))
]
)
actions.append(numpy.random.choice(self.config.action_space))
return target_values, target_rewards, target_policies, actions
@ray.remote
class Reanalyse:
"""
Class which run in a dedicated thread to update the replay buffer with fresh information.
See paper appendix Reanalyse.
"""
def __init__(self, initial_checkpoint, config):
self.config = config
# Fix random generator seed
numpy.random.seed(self.config.seed)
torch.manual_seed(self.config.seed)
# Initialize the network
self.model = models.MuZeroNetwork(self.config)
self.model.set_weights(initial_checkpoint["weights"])
self.model.to(torch.device("cuda" if self.config.reanalyse_on_gpu else "cpu"))
self.model.eval()
self.num_reanalysed_games = initial_checkpoint["num_reanalysed_games"]
def reanalyse(self, replay_buffer, shared_storage):
while ray.get(shared_storage.get_info.remote("num_played_games")) < 1:
time.sleep(0.1)
while ray.get(
shared_storage.get_info.remote("training_step")
) < self.config.training_steps and not ray.get(
shared_storage.get_info.remote("terminate")
):
self.model.set_weights(ray.get(shared_storage.get_info.remote("weights")))
game_id, game_history, _ = ray.get(
replay_buffer.sample_game.remote(force_uniform=True)
)
# Use the last model to provide a fresher, stable n-step value (See paper appendix Reanalyze)
if self.config.use_last_model_value:
observations = numpy.array(
[
game_history.get_stacked_observations(
i,
self.config.stacked_observations,
len(self.config.action_space),
)
for i in range(len(game_history.root_values))
]
)
observations = (
torch.tensor(observations)
.float()
.to(next(self.model.parameters()).device)
)
values = models.support_to_scalar(
self.model.initial_inference(observations)[0],
self.config.support_size,
)
game_history.reanalysed_predicted_root_values = (
torch.squeeze(values).detach().cpu().numpy()
)
replay_buffer.update_game_history.remote(game_id, game_history)
self.num_reanalysed_games += 1
shared_storage.set_info.remote(
"num_reanalysed_games", self.num_reanalysed_games
)