-
Notifications
You must be signed in to change notification settings - Fork 0
/
221_MaximalSquare.java
74 lines (61 loc) · 1.8 KB
/
221_MaximalSquare.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
// For example, given the following matrix:
// 1 0 1 0 0
// 1 0 1 1 1
// 1 1 1 1 1
// 1 0 0 1 0
// Return 4.
//O(m*n) space
public class Solution {
public int maximalSquare(char[][] matrix) {
if(matrix.length < 1) return 0;
int row = matrix.length;
int col = matrix[0].length;
int[][] dp = new int[row][col];
int res = 0;
for(int i = 0; i < row; i++) {
dp[i][0] = matrix[i][0] == '1' ? 1 : 0;
res = Math.max(res, dp[i][0]);
}
for(int j = 0; j < col; j++) {
dp[0][j] = matrix[0][j] == '1' ? 1 : 0;
res = Math.max(res, dp[0][j]);
}
for(int i = 1; i < row; i++) {
for(int j = 1; j < col; j++) {
if(matrix[i][j] == '1') {
dp[i][j] = Math.min(Math.min(dp[i - 1][j], dp[i - 1][j - 1]), dp[i][j - 1]) + 1;
res = Math.max(res, dp[i][j]);
}
}
}
return res * res;
}
}
//O(n) space
public int maximalSquare(char[][] matrix) {
if(matrix == null || matrix.length ==0|| matrix[0].length == 0) return 0;
int[] dp = new int[matrix[0].length +1];
int max = 0;
int tmp1 = 0;
int tmp2 = 0;
for(int i=0; i< matrix.length; i++)
{
tmp1 = 0;
for(int j=0; j< matrix[0].length; j++)
{
tmp2 = dp[j+1];
if(matrix[i][j] == '1')
{
dp[j+1] = Math.min(tmp1, Math.min(dp[j], dp[j+1])) + 1;
max = Math.max(max, dp[j+1]);
}
else
{
dp[j+1] = 0;
}
tmp1 = tmp2;
}
}
return max*max;
}