-
Notifications
You must be signed in to change notification settings - Fork 44
/
image.py
38 lines (34 loc) · 1.16 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import random
import os
from PIL import Image
import numpy as np
import h5py
import cv2
def load_data(img_path,train = True):
gt_path = img_path.replace('.jpg','.h5').replace('images','ground_truth')
img = Image.open(img_path).convert('RGB')
gt_file = h5py.File(gt_path,'r')
target = np.asarray(gt_file['density'])
if train:
ratio = 0.5
crop_size = (int(img.size[0]*ratio),int(img.size[1]*ratio))
rdn_value = random.random()
if rdn_value<0.25:
dx = 0
dy = 0
elif rdn_value<0.5:
dx = int(img.size[0]*ratio)
dy = 0
elif rdn_value<0.75:
dx = 0
dy = int(img.size[1]*ratio)
else:
dx = int(img.size[0]*ratio)
dy = int(img.size[1]*ratio)
img = img.crop((dx,dy,crop_size[0]+dx,crop_size[1]+dy))
target = target[dy:(crop_size[1]+dy),dx:(crop_size[0]+dx)]
if random.random()>0.8:
target = np.fliplr(target)
img = img.transpose(Image.FLIP_LEFT_RIGHT)
target = cv2.resize(target,(target.shape[1]/8,target.shape[0]/8),interpolation = cv2.INTER_CUBIC)*64
return img,target