-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathmod.rs
784 lines (690 loc) · 25.4 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
use crate::collections::HashMap;
use std::borrow::Borrow;
use std::cmp::Ordering;
use std::hash::Hash;
use std::iter::FromIterator;
use std::ops::{BitAnd, BitOr, BitXor, Sub};
/// A hash set implementation based on `HashMap`.
///
/// References:
///
/// - [Rust Standard Library: std::collections::HashSet][1]
///
/// [1]: https://doc.rust-lang.org/stable/std/collections/struct.HashMap.html
pub struct HashSet<T>
where
T: Hash + Eq,
{
hash_map: HashMap<T, ()>,
}
impl<T> HashSet<T>
where
T: Hash + Eq,
{
/// Creates an empty set.
pub fn new() -> Self {
Default::default()
}
/// Gets the number of non-repetitive elements, equivalently to the cardinality of a set.
///
/// # Complexity
///
/// Constant.
pub fn len(&self) -> usize {
self.hash_map.len()
}
/// Returns whether there is no any element in the set.
///
/// # Complexity
///
/// Constant.
pub fn is_empty(&self) -> bool {
self.hash_map.is_empty()
}
/// Inserts an element into the set.
///
/// Returns `true` if there were no such element in the set; returns `false`
/// if an identical element is already in the set.
///
/// # Parameters
///
/// * `value` - Element to be inserted.
///
/// # Complexity
///
/// Constant.
pub fn insert(&mut self, value: T) -> bool {
self.hash_map.insert(value, ()).is_none()
}
/// Returns whether an element is present in the set.
///
/// This is equivalent to "belongs to ∈" relation in mathematics.
///
/// # Parameters
///
/// * `value` - Element to be checked whether is in the set.
///
/// # Complexity
///
/// Constant.
pub fn contains<Q>(&self, value: &Q) -> bool
where
T: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.hash_map.get(value).is_some()
}
/// Removes an element from the set.
///
/// Returns `true` if such item was present and removed; returns `false`
/// if no such item was found in the set.
///
/// # Parameters
///
/// * `value` - Element to be removed.
///
/// # Complexity
///
/// Constant.
pub fn remove<Q>(&mut self, value: &Q) -> bool
where
T: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
self.hash_map.remove(value).is_some()
}
/// Creates an iterator yielding immutable reference of each item in arbitrary order.
pub fn iter(&self) -> impl Iterator<Item = &T> {
self.hash_map.iter().map(|(k, _)| k)
}
/// Returns an iterator visiting items that exists in `self`, in `other`,
/// or in both `self` and `other`
///
/// This is equivalent to `self ∪ other` in mathematics.
///
/// # Parameters
///
/// * `other` - The other set.
pub fn union<'a>(&'a self, other: &'a HashSet<T>) -> impl Iterator<Item = &T> {
// self ∪ (other \ self)
self.iter().chain(other.difference(self))
}
/// Returns an iterator visiting items that exists in `self` but not in `other`.
///
/// This is equivalent to `self \ other` in mathematics.
///
/// # Parameters
///
/// * `other` - The other set.
pub fn difference<'a>(&'a self, other: &'a HashSet<T>) -> impl Iterator<Item = &T> {
self.iter().filter(move |item| !other.contains(item))
}
/// Returns an iterator visiting items that only exists in either `self` or
/// `other` but not in their intersection.
///
/// This is equivalent to `self △ other` in mathematics.
///
/// # Parameters
///
/// * `other` - The other set.
pub fn symmetric_difference<'a>(&'a self, other: &'a HashSet<T>) -> impl Iterator<Item = &T> {
// (self \ other) ∪ (other \ self)
self.difference(other).chain(other.difference(self))
}
/// Returns an iterator visiting items that exists in both `self` and `other`.
///
/// This is equivalent to `self ∩ other` in mathematics.
///
/// # Parameters
///
/// * `other` - The other set.
pub fn intersection<'a>(&'a self, other: &'a HashSet<T>) -> impl Iterator<Item = &T> {
self.iter().filter(move |item| other.contains(item))
}
/// Returns true if `self` has no elements in common with `other`.
///
/// This is equivalent to checking for an empty intersection, which means
/// their intersection is the empty set ∅.
///
/// # Parameters
///
/// * `other` - The other set.
///
/// # Complexity
///
/// Linear in the size of `self`.
pub fn is_disjoint(&self, other: &HashSet<T>) -> bool {
self.intersection(other).count() == 0
}
/// Returns true if `other` contains at least all elements in `self`.
///
/// This is equivalent to `self ⊆ other` in mathematics.
///
/// # Parameters
///
/// * `other` - The other set.
///
/// # Complexity
///
/// Linear in the size of `self`.
pub fn is_subset(&self, other: &HashSet<T>) -> bool {
if self.len() > other.len() {
return false;
}
self.iter().all(|item| other.contains(&item))
}
/// Returns true if `self` contains at least all elements in `other`.
///
/// This is equivalent to `self ⊇ other` in mathematics.
///
/// # Parameters
///
/// * `other` - The other set.
///
/// # Complexity
///
/// Linear in the size of `other`.
pub fn is_superset(&self, other: &HashSet<T>) -> bool {
other.is_subset(self)
}
}
impl<T> Default for HashSet<T>
where
T: Hash + Eq,
{
fn default() -> Self {
Self {
hash_map: HashMap::new(),
}
}
}
impl<T> PartialEq for HashSet<T>
where
T: Hash + Eq,
{
/// Checks the equality of sets.
///
/// Two sets are defined to be equal if they contain the same elements and
/// their cardinality are equal.
///
/// Set theory definition: x = y ⇒ ∀z, (z ∈ x ⇔ z ∈ y)
///
/// # Parameters
///
/// * `other` - The other set.
///
/// # Complexity
///
/// Linear in the size of `self`.
fn eq(&self, other: &HashSet<T>) -> bool {
if self.len() != other.len() {
return false;
}
self.iter().all(|item| other.contains(&item))
}
}
/// A set is reflecxively equal to itself.
impl<T> Eq for HashSet<T> where T: Hash + Eq {}
impl<T> PartialOrd for HashSet<T>
where
T: Hash + Eq,
{
/// Compares sets to determine whether one is a subset of the other or not.
///
/// # Parameters
///
/// * `other` - The other set.
///
/// # Complexity
///
/// Linear in the size of `max(self, other)`.
fn partial_cmp(&self, other: &HashSet<T>) -> Option<Ordering> {
let is_subset = self.is_subset(other);
let same_size = self.len() == other.len();
match (is_subset, same_size) {
(true, true) => Some(Ordering::Equal),
(true, false) => Some(Ordering::Less),
(false, true) => None,
_ => Some(Ordering::Greater).filter(|_| self.is_superset(other)),
}
}
}
impl<T> FromIterator<T> for HashSet<T>
where
T: Hash + Eq,
{
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = T>,
{
let mut s = Self::new();
iter.into_iter().for_each(|i| {
s.insert(i);
});
s
}
}
/// The bitor operator `|`, as an alias of `union()`.
impl<'a, 'b, T> BitOr<&'b HashSet<T>> for &'a HashSet<T>
where
T: Hash + Eq + Clone,
{
type Output = HashSet<T>;
fn bitor(self, rhs: &'b HashSet<T>) -> Self::Output {
self.union(&rhs).cloned().collect()
}
}
/// The sub operator `-`, as an alias of `difference()`.
impl<'a, 'b, T> Sub<&'b HashSet<T>> for &'a HashSet<T>
where
T: Hash + Eq + Clone,
{
type Output = HashSet<T>;
fn sub(self, rhs: &'b HashSet<T>) -> Self::Output {
self.difference(&rhs).cloned().collect()
}
}
/// The bitxor operator `^`, as an alias of `symmetric_difference()`.
impl<'a, 'b, T> BitXor<&'b HashSet<T>> for &'a HashSet<T>
where
T: Hash + Eq + Clone,
{
type Output = HashSet<T>;
fn bitxor(self, rhs: &'b HashSet<T>) -> Self::Output {
self.symmetric_difference(&rhs).cloned().collect()
}
}
/// The bit_and operator `&`, as an alias of intersection().
impl<'a, 'b, T> BitAnd<&'b HashSet<T>> for &'a HashSet<T>
where
T: Hash + Eq + Clone,
{
type Output = HashSet<T>;
fn bitand(self, rhs: &'b HashSet<T>) -> Self::Output {
self.intersection(&rhs).cloned().collect()
}
}
#[cfg(test)]
mod basics {
use super::*;
#[test]
fn basic() {
let s: HashSet<String> = HashSet::new();
assert_eq!(s.len(), 0);
assert!(s.is_empty());
}
#[test]
fn insert() {
let mut s = HashSet::new();
let ok = s.insert("cat");
assert!(ok);
assert_eq!(s.len(), 1);
let ok = s.insert("dog");
assert!(ok);
assert_eq!(s.len(), 2);
// dog already exist!
let ok = s.insert("dog");
assert_eq!(
ok, false,
"Attempting to insert present value returns false"
);
assert_eq!(s.len(), 2, "Certain value can only be inserted to set once");
}
#[test]
fn contains() {
let mut s1: HashSet<&str> = HashSet::new();
s1.insert("cat");
assert_eq!(
s1.contains("cat"),
true,
"contains() returns true for present value"
);
assert_eq!(
s1.contains("dog"),
false,
"contains() returns false for absent value"
);
let mut s2: HashSet<String> = HashSet::new();
s2.insert("cat".to_string());
assert_eq!(
s2.contains(&"cat".to_string()),
true,
"Can query with String"
);
assert_eq!(s2.contains("cat"), true, "Can query with &str");
}
#[test]
fn remove() {
let mut s1: HashSet<&str> = HashSet::new();
s1.insert("cat");
assert!(s1.contains("cat"), "'cat' exists before remove()");
let ok = s1.remove("cat");
assert_eq!(ok, true, "Successful removal returns true");
assert!(!s1.contains("cat"), "'cat' is gone after remove()");
let ok = s1.remove("elephant");
assert_eq!(
ok, false,
"Trying to remove non-existing value returns false"
);
let mut s2: HashSet<String> = HashSet::new();
s2.insert("cat".to_string());
s2.insert("dog".to_string());
assert!(s2.remove(&"cat".to_string()), "Can remove with String");
assert!(
!s2.contains("cat"),
"Successfully removed value with String"
);
assert!(s2.remove("dog"), "Can remove with &str");
assert!(!s2.contains("dog"), "Successfully removed value with &str");
}
#[test]
fn from_iter() {
let s1: HashSet<_> = ["cat", "dog", "rat"].iter().cloned().collect();
assert!(s1.contains("cat"));
assert!(s1.contains("dog"));
assert!(s1.contains("rat"));
assert_eq!(s1.len(), 3);
}
}
#[cfg(test)]
mod set_relations {
use super::*;
#[test]
fn union() {
// ∅ ∪ ∅ = ∅
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
let union = s1.union(&s2);
assert_eq!(union.count(), 0, "∅ ∪ ∅ = ∅");
// ∅ ∪ {cat} = {cat}
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
let union: HashSet<_> = s1.union(&s2).cloned().collect();
let expect: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(union == expect);
// {cat} ∪ ∅ = {cat}
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
let union: HashSet<_> = s1.union(&s2).cloned().collect();
let expect: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(union == expect);
// {cat,dog} ∪ {cat,rat} = {cat,dot,rat}
let s1: HashSet<_> = ["cat", "dog"].iter().cloned().collect();
let s2: HashSet<_> = ["cat", "rat"].iter().cloned().collect();
let union: HashSet<_> = s1.union(&s2).cloned().collect();
let expect: HashSet<&str> = ["cat", "dog", "rat"].iter().cloned().collect();
assert!(union == expect);
}
#[test]
fn intersection() {
// ∅ ∩ ∅ = ∅
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
let intersection = s1.intersection(&s2);
assert_eq!(intersection.count(), 0, "∅ ∩ ∅ = ∅");
// ∅ ∩ {cat} = ∅
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
let intersection = s1.intersection(&s2);
assert_eq!(intersection.count(), 0);
// {cat} ∩ ∅ = ∅
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
let intersection = s1.intersection(&s2);
assert_eq!(intersection.count(), 0);
// {cat,dog} ∩ {cat,rat} = {cat}
let s1: HashSet<_> = ["cat", "dog"].iter().cloned().collect();
let s2: HashSet<_> = ["cat", "rat"].iter().cloned().collect();
let intersection: HashSet<_> = s1.intersection(&s2).cloned().collect();
let expect: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(intersection == expect);
}
#[test]
fn difference() {
// ∅ \ ∅ = ∅
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
let difference = s1.difference(&s2);
assert_eq!(difference.count(), 0, r"∅ \ ∅ = ∅");
// ∅ \ {cat} = ∅
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
let difference = s1.difference(&s2);
assert_eq!(difference.count(), 0);
// {cat} \ ∅ = {cat}
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
let difference: HashSet<_> = s1.difference(&s2).cloned().collect();
let expect: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(difference == expect);
// {cat,dog} \ {cat,rat} = {dog}
let s1: HashSet<_> = ["cat", "dog"].iter().cloned().collect();
let s2: HashSet<_> = ["cat", "rat"].iter().cloned().collect();
let difference: HashSet<_> = s1.difference(&s2).cloned().collect();
let expect: HashSet<&str> = ["dog"].iter().cloned().collect();
assert!(difference == expect);
}
#[test]
fn symmetric_difference() {
// ∅ △ ∅ = ∅
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
let symmetric_difference = s1.symmetric_difference(&s2);
assert_eq!(symmetric_difference.count(), 0, "∅ △ ∅ = ∅");
// ∅ △ {cat} = {cat}
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
let symmetric_difference: HashSet<_> = s1.symmetric_difference(&s2).cloned().collect();
let expect: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(symmetric_difference == expect);
// {cat} △ ∅ = {cat}
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
let symmetric_difference: HashSet<_> = s1.symmetric_difference(&s2).cloned().collect();
let expect: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(symmetric_difference == expect);
// {cat,dog} △ {cat,rat} = {dog, rat}
let s1: HashSet<_> = ["cat", "dog"].iter().cloned().collect();
let s2: HashSet<_> = ["cat", "rat"].iter().cloned().collect();
let symmetric_difference: HashSet<_> = s1.symmetric_difference(&s2).cloned().collect();
let expect: HashSet<&str> = ["dog", "rat"].iter().cloned().collect();
assert!(symmetric_difference == expect);
}
#[test]
fn is_disjoint() {
// ∅, ∅ are disjoint.
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
assert!(s1.is_disjoint(&s2), "∅, ∅ are disjoint");
// ∅, {cat} are disjoint.
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(s1.is_disjoint(&s2), "{}", "∅, {cat} are disjoint");
assert!(s2.is_disjoint(&s1), "{}", "∅, {cat} are disjoint");
// {rat}, {cat} are disjoint.
let s1: HashSet<&str> = ["rat"].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(s1.is_disjoint(&s2));
// {cat}, {cat} are not disjoint.
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
assert_eq!(s1.is_disjoint(&s2), false);
assert_eq!(s2.is_disjoint(&s1), false);
}
#[test]
fn is_subset() {
// ∅ ⊆ ∅
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
assert!(s1.is_subset(&s2), "∅ ⊆ ∅");
assert!(s2.is_subset(&s1), "∅ ⊆ ∅");
// ∀𝑨: ∅ ⊆ 𝑨
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(s1.is_subset(&s2), "∀𝑨: ∅ ⊆ 𝑨");
// ∀𝑨, 𝑨 ≠ ∅: 𝑨 ⊈ ∅
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
assert_eq!(s1.is_subset(&s2), false, "∀𝑨, 𝑨 ≠ ∅: 𝑨 ⊈ ∅");
// {cat} ⊆ {cat}
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(s1.is_subset(&s2));
// {cat} ⊆ {cat,rat}
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = ["cat", "rat"].iter().cloned().collect();
assert!(s1.is_subset(&s2));
// {cat,rat} ⊈ {cat}
let s1: HashSet<&str> = ["cat", "rat"].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
assert_eq!(s1.is_subset(&s2), false);
}
#[test]
fn is_superset() {
// ∅ ⊇ ∅
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
assert!(s1.is_superset(&s2), "∅ ⊇ ∅");
assert!(s2.is_superset(&s1), "∅ ⊇ ∅");
// ∀𝑨, 𝑨 ≠ ∅: ∅ ⊉ 𝑨
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
assert_eq!(s1.is_superset(&s2), false, "∀𝑨, 𝑨 ≠ ∅: ∅ ⊉ 𝑨");
// ∀𝑨: 𝑨 ⊇ ∅
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
assert_eq!(s1.is_superset(&s2), true, "∀𝑨: 𝑨 ⊇ ∅");
// {cat} ⊇ {cat}
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(s1.is_superset(&s2));
// {cat} ⊉ {cat,rat}
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = ["cat", "rat"].iter().cloned().collect();
assert_eq!(s1.is_superset(&s2), false);
// {cat,rat} ⊇ {cat}
let s1: HashSet<&str> = ["cat", "rat"].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(s1.is_superset(&s2));
}
}
#[cfg(test)]
mod logical_ops {
use super::*;
#[test]
fn bitor() {
// Same as union
let s1: HashSet<_> = ["cat", "dog"].iter().cloned().collect();
let s2: HashSet<_> = ["cat", "rat"].iter().cloned().collect();
let union = &s1 | &s2;
let expect: HashSet<&str> = ["cat", "dog", "rat"].iter().cloned().collect();
assert!(union == expect);
assert_eq!(s1.len(), 2, "s1 is still available");
assert_eq!(s2.len(), 2, "s2 is still available");
}
#[test]
fn bitand() {
// Same as intersection
let s1: HashSet<_> = ["cat", "dog"].iter().cloned().collect();
let s2: HashSet<_> = ["cat", "rat"].iter().cloned().collect();
let intersection: HashSet<_> = &s1 & &s2;
let expect: HashSet<&str> = ["cat"].iter().cloned().collect();
assert!(intersection == expect);
}
#[test]
fn sub() {
// Same as difference
let s1: HashSet<_> = ["cat", "dog"].iter().cloned().collect();
let s2: HashSet<_> = ["cat", "rat"].iter().cloned().collect();
let difference = &s1 - &s2;
let expect: HashSet<&str> = ["dog"].iter().cloned().collect();
assert!(difference == expect);
}
#[test]
fn bitxor() {
// Same as difference
let s1: HashSet<_> = ["cat", "dog"].iter().cloned().collect();
let s2: HashSet<_> = ["cat", "rat"].iter().cloned().collect();
let symmetric_difference: HashSet<_> = &s1 ^ &s2;
let expect: HashSet<&str> = ["dog", "rat"].iter().cloned().collect();
assert!(symmetric_difference == expect);
}
}
#[cfg(test)]
mod cmp_ops {
use super::*;
#[test]
fn eq() {
let set: HashSet<_> = ["cat", "dog", "rat"].iter().cloned().collect();
let identical: HashSet<_> = ["cat", "dog", "rat"].iter().cloned().collect();
assert!(set == identical, "sets of identical elements are equal");
let reordered: HashSet<_> = ["rat", "cat", "dog"].iter().cloned().collect();
assert!(set == reordered, "order of elements doesn't matter");
let different: HashSet<_> = ["cat", "dog", "elephant"].iter().cloned().collect();
assert!(set != different);
let superset: HashSet<_> = ["cat", "dog", "rat", "elephant"].iter().cloned().collect();
assert!(set != superset);
let subset: HashSet<_> = ["cat"].iter().cloned().collect();
assert!(set != subset);
// ∅ = ∅
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
assert!(s1 == s2, "∅ = ∅");
// ∅ ≠ {cat}
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
assert_eq!(s1 != s2, true);
// {cat} ≠ ∅
let s1: HashSet<&str> = ["cat"].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
assert_eq!(s1 != s2, true)
}
#[test]
fn partial_cmp() {
let set: HashSet<_> = ["cat", "dog", "rat"].iter().cloned().collect();
let identical: HashSet<_> = ["cat", "dog", "rat"].iter().cloned().collect();
assert_eq!(set.partial_cmp(&identical), Some(Ordering::Equal));
assert_eq!(&set > &identical, false);
assert_eq!(&set >= &identical, true);
assert_eq!(&set < &identical, false);
assert_eq!(&set <= &identical, true);
assert_eq!(&set == &identical, true);
let different: HashSet<_> = ["cat", "dog", "elephant"].iter().cloned().collect();
assert_eq!(set.partial_cmp(&different), None);
assert_eq!(&set > &different, false);
assert_eq!(&set >= &different, false);
assert_eq!(&set < &different, false);
assert_eq!(&set <= &different, false);
assert_eq!(&set == &different, false);
let superset: HashSet<_> = ["cat", "dog", "rat", "elephant"].iter().cloned().collect();
assert_eq!(set.partial_cmp(&superset), Some(Ordering::Less));
assert_eq!(&set > &superset, false);
assert_eq!(&set >= &superset, false);
assert_eq!(&set < &superset, true);
assert_eq!(&set <= &superset, true);
assert_eq!(&set == &superset, false);
let subset: HashSet<_> = ["cat"].iter().cloned().collect();
assert_eq!(set.partial_cmp(&subset), Some(Ordering::Greater));
assert_eq!(&set > &subset, true);
assert_eq!(&set < &subset, false);
assert_eq!(&set == &subset, false);
// ∅ = ∅
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = [].iter().cloned().collect();
assert_eq!(s1.partial_cmp(&s2), Some(Ordering::Equal));
assert_eq!(&s1 > &s2, false);
assert_eq!(&s1 >= &s2, true);
assert_eq!(&s1 < &s2, false);
assert_eq!(&s1 <= &s2, true);
assert_eq!(&s1 == &s2, true);
// ∅ ≠ {cat}
let s1: HashSet<&str> = [].iter().cloned().collect();
let s2: HashSet<&str> = ["cat"].iter().cloned().collect();
assert_eq!(s1.partial_cmp(&s2), Some(Ordering::Less));
assert_eq!(&s1 > &s2, false);
assert_eq!(&s1 >= &s2, false);
assert_eq!(&s1 < &s2, true);
assert_eq!(&s1 <= &s2, true);
assert_eq!(&s1 == &s2, false);
}
}