-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgaia_dr2_cluster_cmd.py
68 lines (54 loc) · 2.64 KB
/
gaia_dr2_cluster_cmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python3
# reproduces open cluster CMD (Fig. 2) from Gaia DR2: Observational HRDs
# https://ui.adsabs.harvard.edu/abs/2018A%26A...616A..10G
# https://cdsarc.unistra.fr/viz-bin/cat/J/A+A/616/A10
import numpy as np
import matplotlib.pyplot as pl
# data for open clusters copied by hand from Table 2
ocs = np.genfromtxt('data/gaia_dr2_ocs.dat', names=True, encoding='utf-8', dtype=None, delimiter=',')
try:
# try to load cached data
data = np.load('data/gaia_dr2_cluster_cmd.npy', allow_pickle=True)
except:
# if we fail, download the data again
from astropy.io.votable import from_table, writeto
from astropy.table import vstack
from astroquery.vizier import Vizier
from astroquery.gaia import Gaia
# retrieve lists of stars from Vizier
v = Vizier(columns=['**', '+_r'], row_limit=-1)
cats = v.get_catalogs('J/A+A/616/A10')
# tablea1a.dat 71 5378 Stars in nine open clusters within 250pc
# tablea1b.dat 58 35525 Stars in 37 open clusters beyond 250pc
# tablea3.dat 160 9 Mean parameters for clusters within 250pc
# tablea4.dat 120 37 Mean parameters for clusters beyond 250pc
sources = vstack([cats[0], cats[1]])
# download Gaia data synchronously, 1900 rows at a time
# by writing source names to a local VOTable
# then uploading it and merging against main Gaia DR2 source table
query = """SELECT *
FROM tap_upload.table_test AS sources
INNER JOIN gaiadr2.gaia_source AS gaia
ON sources.source = gaia.source_id"""
upload_resource = '/tmp/gaia_dr2_cluster_cmd.xml'
def get_one(start, end):
writeto(from_table(sources[start:end], table_id='cluster_cmd'), upload_resource)
return Gaia.launch_job(query=query, upload_resource=upload_resource,
upload_table_name="table_test", verbose=True).get_results()
data = vstack([get_one(i, i+1900) for i in range(0, len(sources), 1900)]).as_array()
# cache file locally
np.save('data/gaia_dr2_cluster_cmd.npy', data, allow_pickle=True)
vmin = ocs['age'].min()
vmax = ocs['age'].max()
for row in ocs[np.argsort(ocs['age'])]:
cluster = row['Cluster']
I = data['cluster'] == cluster
pl.scatter(data[I]['bp_rp'], data[I]['phot_g_mean_mag']-row['DM'], s=3,
color=pl.cm.jet((row['age']-vmin)/(vmax-vmin)), label=cluster)
pl.xlabel(r"$\mathrm{G}_\mathrm{BP}-\mathrm{G}_\mathrm{RP}$")
pl.ylabel(r"$M_\mathrm{G}$")
pl.gca().invert_yaxis()
pl.colorbar(pl.cm.ScalarMappable(cmap=pl.cm.jet,
norm=pl.Normalize(vmin=vmin, vmax=vmax)),
label=r"$\log_{10}(\mathrm{age})$")
pl.show()