forked from Morizeyao/GPT2-Chinese
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_single.py
260 lines (228 loc) · 11.7 KB
/
train_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import transformers
import torch
import os
import json
import random
import argparse
import numpy as np
from datetime import datetime
from torch.nn import DataParallel
from tqdm import tqdm
import pdb
'''
如果训练材料是全部堆在一起不分篇章的话用这个文件
'''
def build_files(raw_data_path, divide_path, tokenized_data_path, full_tokenizer, num_pieces):
if not os.path.exists(tokenized_data_path):
os.mkdir(tokenized_data_path)
if not os.path.exists(divide_path):
os.mkdir(divide_path)
print("now time: ", datetime.now())
print("begin to divide raw text ...")
total_line_num = 0
with open(raw_data_path, 'r', encoding='utf8') as f:
for line in f:
total_line_num+=1
writers = [open(divide_path + 'divide_piece_{}.txt'.format(i), 'w') for i in range(0,num_pieces)]
with open(raw_data_path, 'r', encoding='utf8') as f:
line_num = 0
for line in f:
writers[line_num % num_pieces].write("%s" % line)
line_num += 1
for i in range(0, num_pieces):
writers[i].close()
print('now time: ', datetime.now())
print("begin making tokenization ...")
files = [filename for filename in os.listdir(divide_path) if f!='.gitignore']
for i, filename in enumerate(files):
if(os.path.isdir(filename)):
continue
with open(divide_path+filename, 'r', encoding='utf8') as reader:
print("reading file {}, now time is {}".format(filename, datetime.now()))
lines = []
for line in reader:
line = line.replace('\n', '[SEP]')
line = '[CLS]' + line
lines.append(line)
single_file = ''.join(lines)
single_ids = full_tokenizer.convert_tokens_to_ids(full_tokenizer._tokenize(single_file))
# pdb.set_trace()
with open(tokenized_data_path + 'tokenized_train_{}.txt'.format(i), 'w') as f:
for id in single_ids[:-1]:
f.write(str(id) + ' ')
f.write(str(single_ids[-1]))
f.write('\n')
print('now time: {}, tokenized tokenized_train_{}.txt'.format(datetime.now(), i))
print('finish')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='0,1,2,3', type=str, required=False, help='设置使用哪些显卡')
parser.add_argument('--model_config', default='config/model_config_small.json', type=str, required=False,
help='选择模型参数')
parser.add_argument('--tokenizer_path', default='cache/vocab_small.txt', type=str, required=False, help='选择词库')
parser.add_argument('--raw_data_path', default='data/train.json', type=str, required=False, help='原始训练语料')
parser.add_argument('--divide_path', default='data/divide/', type=str, required=False,
help='大文件语料分割成小文件时的临时存放位置')
parser.add_argument('--tokenized_data_path', default='data/tokenized/', type=str, required=False,
help='tokenized语料存放位置')
parser.add_argument('--raw', action='store_true', help='是否先做tokenize')
parser.add_argument('--epochs', default=5, type=int, required=False, help='训练循环')
parser.add_argument('--batch_size', default=8, type=int, required=False, help='训练batch size')
parser.add_argument('--lr', default=1.5e-4, type=float, required=False, help='学习率')
parser.add_argument('--warmup_steps', default=2000, type=int, required=False, help='warm up步数')
parser.add_argument('--log_step', default=1, type=int, required=False, help='多少步汇报一次loss')
parser.add_argument('--stride', default=768, type=int, required=False, help='训练时取训练数据的窗口步长')
parser.add_argument('--gradient_accumulation', default=1, type=int, required=False, help='梯度积累')
parser.add_argument('--fp16', action='store_true', help='混合精度')
parser.add_argument('--fp16_opt_level', default='O1', type=str, required=False)
parser.add_argument('--max_grad_norm', default=1.0, type=float, required=False)
parser.add_argument('--num_pieces', default=100, type=int, required=False, help='将训练语料分成多少份')
parser.add_argument('--output_dir', default='model/', type=str, required=False, help='模型输出路径')
parser.add_argument('--pretrained_model', default='', type=str, required=False, help='模型训练起点路径')
parser.add_argument('--segment', action='store_true', help='中文以词为单位')
args = parser.parse_args()
print('args:\n' + args.__repr__())
if args.segment:
from tokenizations import tokenization_bert_word_level as tokenization_util
else:
from tokenizations import tokenization_chars as tokenization_util
os.environ["CUDA_VISIBLE_DEVICES"] = args.device # 此处设置程序使用哪些显卡
model_config = transformers.modeling_gpt2.GPT2Config.from_json_file(args.model_config)
print('config:\n' + model_config.to_json_string())
n_ctx = model_config.n_ctx
full_tokenizer = tokenization_util.BertTokenizer(vocab_file=args.tokenizer_path)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('using device:', device)
raw_data_path = args.raw_data_path
tokenized_data_path = args.tokenized_data_path
raw = args.raw # 选择是否从零开始构建数据集
epochs = args.epochs
batch_size = args.batch_size
lr = args.lr
warmup_steps = args.warmup_steps
log_step = args.log_step
stride = args.stride
gradient_accumulation = args.gradient_accumulation
fp16 = args.fp16 # 不支持半精度的显卡请勿打开
fp16_opt_level = args.fp16_opt_level
max_grad_norm = args.max_grad_norm
num_pieces = args.num_pieces
output_dir = args.output_dir
if raw:
print('building files')
build_files(raw_data_path=raw_data_path, divide_path=args.divide_path, tokenized_data_path=tokenized_data_path, full_tokenizer=full_tokenizer,
num_pieces=num_pieces)
print('files built')
if not args.pretrained_model:
model = transformers.modeling_gpt2.GPT2LMHeadModel(config=model_config)
else:
model = transformers.modeling_gpt2.GPT2LMHeadModel.from_pretrained(args.pretrained_model)
model.train()
model.to(device)
multi_gpu = False
full_len = 0
print('calculating total steps')
for i in tqdm(range(num_pieces)):
with open(tokenized_data_path + 'tokenized_train_{}.txt'.format(i), 'r') as f:
full_len += len([int(item) for item in f.read().strip().split()])
total_steps = int(full_len / stride * epochs / batch_size / gradient_accumulation)
print('total steps = {}'.format(total_steps))
optimizer = transformers.AdamW(model.parameters(), lr=lr, correct_bias=True)
scheduler = transformers.WarmupLinearSchedule(optimizer, warmup_steps=warmup_steps,
t_total=total_steps)
if fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=fp16_opt_level)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = DataParallel(model)
multi_gpu = True
print('starting training')
running_loss = 0
for epoch in range(epochs):
print('epoch {}'.format(epoch + 1))
now = datetime.now()
print('time: {}'.format(now))
x = np.linspace(0, num_pieces - 1, num_pieces, dtype=np.int32)
random.shuffle(x)
piece_num = 0
for i in x:
with open(tokenized_data_path + 'tokenized_train_{}.txt'.format(i), 'r') as f:
line = f.read().strip()
tokens = line.split()
tokens = [int(token) for token in tokens]
start_point = 0
samples = []
while start_point < len(tokens) - n_ctx:
samples.append(tokens[start_point: start_point + n_ctx])
start_point += stride
if start_point < len(tokens):
samples.append(tokens[len(tokens)-n_ctx:])
random.shuffle(samples)
for step in range(len(samples) // batch_size):
# prepare data
batch = samples[step * batch_size: (step + 1) * batch_size]
batch_labels = []
batch_inputs = []
for ids in batch:
int_ids_for_labels = [int(x) for x in ids]
int_ids_for_inputs = [int(x) for x in ids]
batch_labels.append(int_ids_for_labels)
batch_inputs.append(int_ids_for_inputs)
batch_labels = torch.tensor(batch_labels).long().to(device)
batch_inputs = torch.tensor(batch_inputs).long().to(device)
# forward pass
outputs = model.forward(input_ids=batch_inputs, labels=batch_labels)
loss, logits = outputs[:2]
# get loss
if multi_gpu:
loss = loss.mean()
if gradient_accumulation > 1:
loss = loss / gradient_accumulation
# loss backward
if fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
# optimizer step
if (step + 1) % gradient_accumulation == 0:
running_loss += loss.item()
optimizer.step()
optimizer.zero_grad()
scheduler.step()
if (step + 1) % log_step == 0:
print('now time: {}:{}. Step {} of piece {} of epoch {}, loss {}'.format(
datetime.now().hour,
datetime.now().minute,
(step + 1) // gradient_accumulation,
piece_num,
epoch + 1,
running_loss / log_step))
running_loss = 0
piece_num += 1
print('saving model for epoch {}'.format(epoch + 1))
if not os.path.exists(output_dir + 'model_epoch{}'.format(epoch + 1)):
os.mkdir(output_dir + 'model_epoch{}'.format(epoch + 1))
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir + 'model_epoch{}'.format(epoch + 1))
# torch.save(scheduler.state_dict(), output_dir + 'model_epoch{}/scheduler.pt'.format(epoch + 1))
# torch.save(optimizer.state_dict(), output_dir + 'model_epoch{}/optimizer.pt'.format(epoch + 1))
print('epoch {} finished'.format(epoch + 1))
then = datetime.now()
print('time: {}'.format(then))
print('time for one epoch: {}'.format(then - now))
print('training finished')
if not os.path.exists(output_dir + 'final_model'):
os.mkdir(output_dir + 'final_model')
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir + 'final_model')
# torch.save(scheduler.state_dict(), output_dir + 'final_model/scheduler.pt')
# torch.save(optimizer.state_dict(), output_dir + 'final_model/optimizer.pt')
if __name__ == '__main__':
main()