Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How exactly should look the second parametr? #88

Open
povolann opened this issue Jun 3, 2021 · 0 comments
Open

How exactly should look the second parametr? #88

povolann opened this issue Jun 3, 2021 · 0 comments

Comments

@povolann
Copy link

povolann commented Jun 3, 2021

Hello,
I wanted to use hiddenlayer, but I am not sure about the second parameter (torch.zeros([1, 1, 512, 512]).to(device)), how exactly it should look? I think that the last 3 number are channels and size of image, but what exactly is the first number? So far I have implemented it like this:

summary(net, (1, 512, 512))
# Build HiddenLayer graph
hl_graph = hl.build_graph(net, torch.zeros([1, 1, 512, 512]).to(device))
# Use a different color theme
hl_graph.theme = hl.graph.THEMES["blue"].copy()  # Two options: basic and blue
hl_graph.save(path=os.path.join(dirname, outputDir) , format="png")

But I'm getting this error

Unsupported: ONNX export of Pad in opset 9. The sizes of the padding must be constant. Please try opset version 11.

The output from summary seems to work ok:

        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 512, 512]             640
       BatchNorm2d-2         [-1, 64, 512, 512]             128
              ReLU-3         [-1, 64, 512, 512]               0
            Conv2d-4         [-1, 64, 512, 512]          36,928
       BatchNorm2d-5         [-1, 64, 512, 512]             128
              ReLU-6         [-1, 64, 512, 512]               0
        DoubleConv-7         [-1, 64, 512, 512]               0
         MaxPool2d-8         [-1, 64, 256, 256]               0
            Conv2d-9        [-1, 128, 256, 256]          73,856
      BatchNorm2d-10        [-1, 128, 256, 256]             256
             ReLU-11        [-1, 128, 256, 256]               0
           Conv2d-12        [-1, 128, 256, 256]         147,584
      BatchNorm2d-13        [-1, 128, 256, 256]             256
             ReLU-14        [-1, 128, 256, 256]               0
       DoubleConv-15        [-1, 128, 256, 256]               0
             Down-16        [-1, 128, 256, 256]               0
        MaxPool2d-17        [-1, 128, 128, 128]               0
           Conv2d-18        [-1, 256, 128, 128]         295,168
      BatchNorm2d-19        [-1, 256, 128, 128]             512
             ReLU-20        [-1, 256, 128, 128]               0
           Conv2d-21        [-1, 256, 128, 128]         590,080
      BatchNorm2d-22        [-1, 256, 128, 128]             512
             ReLU-23        [-1, 256, 128, 128]               0
       DoubleConv-24        [-1, 256, 128, 128]               0
             Down-25        [-1, 256, 128, 128]               0
        MaxPool2d-26          [-1, 256, 64, 64]               0
           Conv2d-27          [-1, 512, 64, 64]       1,180,160
      BatchNorm2d-28          [-1, 512, 64, 64]           1,024
             ReLU-29          [-1, 512, 64, 64]               0
           Conv2d-30          [-1, 512, 64, 64]       2,359,808
      BatchNorm2d-31          [-1, 512, 64, 64]           1,024
             ReLU-32          [-1, 512, 64, 64]               0
       DoubleConv-33          [-1, 512, 64, 64]               0
             Down-34          [-1, 512, 64, 64]               0
        MaxPool2d-35          [-1, 512, 32, 32]               0
           Conv2d-36          [-1, 512, 32, 32]       2,359,808
      BatchNorm2d-37          [-1, 512, 32, 32]           1,024
             ReLU-38          [-1, 512, 32, 32]               0
           Conv2d-39          [-1, 512, 32, 32]       2,359,808
      BatchNorm2d-40          [-1, 512, 32, 32]           1,024
             ReLU-41          [-1, 512, 32, 32]               0
       DoubleConv-42          [-1, 512, 32, 32]               0
             Down-43          [-1, 512, 32, 32]               0
         Upsample-44          [-1, 512, 64, 64]               0
           Conv2d-45          [-1, 512, 64, 64]       4,719,104
      BatchNorm2d-46          [-1, 512, 64, 64]           1,024
             ReLU-47          [-1, 512, 64, 64]               0
           Conv2d-48          [-1, 256, 64, 64]       1,179,904
      BatchNorm2d-49          [-1, 256, 64, 64]             512
             ReLU-50          [-1, 256, 64, 64]               0
       DoubleConv-51          [-1, 256, 64, 64]               0
               Up-52          [-1, 256, 64, 64]               0
         Upsample-53        [-1, 256, 128, 128]               0
           Conv2d-54        [-1, 256, 128, 128]       1,179,904
      BatchNorm2d-55        [-1, 256, 128, 128]             512
             ReLU-56        [-1, 256, 128, 128]               0
           Conv2d-57        [-1, 128, 128, 128]         295,040
      BatchNorm2d-58        [-1, 128, 128, 128]             256
             ReLU-59        [-1, 128, 128, 128]               0
       DoubleConv-60        [-1, 128, 128, 128]               0
               Up-61        [-1, 128, 128, 128]               0
         Upsample-62        [-1, 128, 256, 256]               0
           Conv2d-63        [-1, 128, 256, 256]         295,040
      BatchNorm2d-64        [-1, 128, 256, 256]             256
             ReLU-65        [-1, 128, 256, 256]               0
           Conv2d-66         [-1, 64, 256, 256]          73,792
      BatchNorm2d-67         [-1, 64, 256, 256]             128
             ReLU-68         [-1, 64, 256, 256]               0
       DoubleConv-69         [-1, 64, 256, 256]               0
               Up-70         [-1, 64, 256, 256]               0
         Upsample-71         [-1, 64, 512, 512]               0
           Conv2d-72         [-1, 64, 512, 512]          73,792
      BatchNorm2d-73         [-1, 64, 512, 512]             128
             ReLU-74         [-1, 64, 512, 512]               0
           Conv2d-75         [-1, 64, 512, 512]          36,928
      BatchNorm2d-76         [-1, 64, 512, 512]             128
             ReLU-77         [-1, 64, 512, 512]               0
       DoubleConv-78         [-1, 64, 512, 512]               0
               Up-79         [-1, 64, 512, 512]               0
           Conv2d-80          [-1, 1, 512, 512]              65
          OutConv-81          [-1, 1, 512, 512]               0
================================================================
Total params: 17,266,241
Trainable params: 17,266,241
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 1.00
Forward/backward pass size (MB): 3768.00
Params size (MB): 65.87
Estimated Total Size (MB): 3834.87
----------------------------------------------------------------
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant