-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathrun.py
108 lines (86 loc) · 4.54 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""
Simple script to run a forward pass with SSD-6D on a SIXD dataset with a trained model.
Usage:
run.py [options]
run.py (-h | --help)
Options:
-d, --dataset=<string> Path to SIXD dataset [default: /Users/kehl/Desktop/sixd/hinterstoisser]
-s, --sequence=<int> Number of the sequence [default: 1]
-f, --frames=<int> Number of frames to load [default: 10]
-n, --network=<string> Path to trained network [default: /Users/kehl/Dropbox/iccv-models/hinterstoisser_obj_01.pb]
-t, --threshold=<float> Threshold for the detection confidence [default: 0.5]
-v, --views=<int> Views to parse for 6D pose pooling [default: 3]
-i, --inplanes=<int> In-plane rotations to parse for 6D pose pooling [default: 3]
-h --help Show this message and exit
"""
import cv2
from docopt import docopt
import numpy as np
import tensorflow as tf
from ssd.ssd_utils import load_frozen_graph, NMSUtility, process_detection_output
from rendering.utils import precompute_projections, build_6D_poses, verify_6D_poses
from rendering.utils import draw_detections_2D, draw_detections_3D
from utils.sixd import load_sixd
args = docopt(__doc__)
sixd_base = args["--dataset"]
sequence = int(args["--sequence"])
nr_frames = int(args["--frames"])
network = args["--network"]
threshold = float(args["--threshold"])
views_to_parse = int(args["--views"])
inplanes_to_parse = int(args["--inplanes"])
# Build detection and NMS networks
load_frozen_graph(network)
nms = NMSUtility(max_output_size=100, iou_threshold=0.45)
with tf.Session() as sess:
# Read out constant information
models = sess.run(sess.graph.get_tensor_by_name('models:0'))
models = [m.decode('utf-8') for m in models] # Strings are byte-encoded
views = sess.run(sess.graph.get_tensor_by_name('views:0'))
inplanes = sess.run(sess.graph.get_tensor_by_name('inplanes:0'))
priors = sess.run(sess.graph.get_tensor_by_name('priors:0'))
variances = sess.run(sess.graph.get_tensor_by_name('variances:0'))
priors = np.concatenate((priors, variances), axis=1)
# Get tensor handles
tensor_in = sess.graph.get_tensor_by_name('input:0')
tensor_loc = sess.graph.get_tensor_by_name('locations:0')
tensor_cla = sess.graph.get_tensor_by_name('class_probs:0')
tensor_view = sess.graph.get_tensor_by_name('view_probs:0')
tensor_inpl = sess.graph.get_tensor_by_name('inplane_probs:0')
if len(models) == 1: # If single-object network
models = ['obj_{:02d}'.format(sequence)] # Overwrite model name
bench = load_sixd(sixd_base, nr_frames=nr_frames, seq=sequence)
input_shape = (1, 299, 299, 3)
print('Models:', models)
print('Views:', len(views))
print('Inplanes:', len(inplanes))
print('Priors:', priors.shape)
print('Precomputing projections for each used model...')
model_map = bench.models # Mapping from name to model3D instance
for model_name in models:
m = model_map[model_name]
m.projections = precompute_projections(views, inplanes, bench.cam, m)
# Process each frame separately
for f in bench.frames:
image = cv2.resize(f.color, (input_shape[2], input_shape[1]))
image = image[np.newaxis, :] # Bring image into 4D batch shape
# Get the raw network output
run = [tensor_loc, tensor_cla, tensor_view, tensor_inpl]
encoded_boxes, cla_probs, view_probs, inpl_probs = sess.run(run, {tensor_in: image})
# Extend rank because of buggy TF 1.0 softmax
cla_probs = cla_probs[np.newaxis, :]
view_probs = view_probs[np.newaxis, :]
inpl_probs = inpl_probs[np.newaxis, :]
# Read out the detections in proper format for us
dets_2d = process_detection_output(sess, priors, nms, models,
encoded_boxes, cla_probs, view_probs, inpl_probs,
threshold, views_to_parse, inplanes_to_parse)
# Convert the 2D detections with their view/inplane IDs into 6D poses
dets_6d = build_6D_poses(dets_2d, model_map, bench.cam)[0]
# (NOT INCLUDED HERE) Run pose refinement for each pose in pool
# Pick for each detection the best pose from the 6D pose pool
final = verify_6D_poses(dets_6d, model_map, bench.cam, f.color)
cv2.imshow('2D boxes', draw_detections_2D(f.color, final))
cv2.imshow('6D pools', draw_detections_3D(f.color, dets_6d, bench.cam, model_map))
cv2.imshow('Final poses', draw_detections_3D(f.color, final, bench.cam, model_map))
cv2.waitKey()