-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-bound.tex
279 lines (248 loc) · 11.8 KB
/
chap-bound.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
\chapter{Total boundness of reloids}
\section{Thick binary relations}
\begin{defn}
\index{alpha-thick@$\alpha$-thick}I will call \emph{$\alpha$-thick} and denote $\thick_{\alpha}(E)$
a $\mathbf{Rel}$-endomorphism $E$ when there exists a finite cover $S$
of $\Ob E$ such that $\forall A\in S:A\times A\subseteq\GR E$.
\end{defn}
\begin{defn}
$\CS(S)=\bigcup\setcond{A\times A}{A\in S}$ for a collection $S$
of sets.\end{defn}
\begin{rem}
$\CS$ means ``Cartesian squares''.\end{rem}
\begin{obvious}
A $\mathbf{Rel}$-endomorphism is $\alpha$-thick iff there exists
a finite cover $S$ of $\Ob E$ such that $\CS(S)\subseteq\GR E$.\end{obvious}
\begin{defn}
\index{beta
-thick@$\beta$-thick}I will call \emph{$\beta$-thick} and denote $\thick_{\beta}(E)$
a $\mathbf{Rel}$-endomorphism $E$ when there exists a finite set
$B$ such that $\rsupfun{\GR E}B=\Ob E$.\end{defn}
\begin{prop}
$\thick_{\alpha}(E)\Rightarrow\thick_{\beta}(E)$.\end{prop}
\begin{proof}
Let $\thick_{\alpha}(E)$. Then there exists a finite cover $S$ of
the set $\Ob E$ such that $\forall A\in S:A\times A\subseteq\GR E$.
Without loss of generality assume $A\ne\emptyset$ for every $A\in S$.
So $A\subseteq\rsupfun{\GR E}\{x_{A}\}$ for some $x_{A}$ for every
$A\in S$. So
\[
\rsupfun{\GR E}\setcond{x_{A}}{A\in S}=\bigcup\setcond{\rsupfun{\GR E}\{x_{A}\}}{A\in S}=\Ob E
\]
and thus $E$ is $\beta$-thick.\end{proof}
\begin{obvious}
Let $X$ be a set, $A$ and $B$ be $\mathbf{Rel}$-endomorphisms
on $X$ and $B\sqsupseteq A$. Then:
\begin{itemize}
\item $\thick_{\alpha}(A)\Rightarrow\thick_{\alpha}(B)$;
\item $\thick_{\beta}(A)\Rightarrow\thick_{\beta}(B)$.
\end{itemize}
\end{obvious}
\begin{example}
There is a $\beta$-thick Rel-morphism which is not $\alpha$-thick.\end{example}
\begin{proof}
Consider the $\mathbf{Rel}$-morphism on $[0;1]$ with the graph on
figure~\ref{fig:thick-counterexample}:
\[
\Gamma=\setcond{(x,x)}{x\in[0;1]}\cup\setcond{(x,0)}{x\in[0;1]}\cup\setcond{(0,x)}{x\in[0;1]}.
\]
\begin{figure}[ht]
\begin{tikzpicture}
\draw[thin,gray,text=black,<->] (0,1.4) node[left] {$y$}
|- (1.4,0) node[below] {$x\vphantom{1}$};
\draw[densely dotted,gray] (1,0) |- (0,1);
\draw[thick] (0,1) node[left] {$1$}
-- (0,0) node[below left] {$0$}
-- (1,0) node[below] {$1$}
(0,0) -- (1,1);
\end{tikzpicture}
\caption{\label{fig:thick-counterexample}Thickness counterexample graph}
\end{figure}
$\Gamma$ is $\beta$-thick because $\rsupfun{\Gamma}\{0\}=[0;1]$.
To prove that $\Gamma$ is not $\alpha$-thick it's enough to prove
that every set $A$ such that $A\times A\subseteq\Gamma$ is finite.
Suppose for the contrary that $A$ is infinite. Then $A$ contains
more than one non-zero points $y$, $z$ ($y\ne z$). Without loss
of generality $y<z$. So we have that $(y,z)$ is not of the form
$(y,y)$ nor $(0,y)$ nor $(y,0)$. Therefore $A\times A$ isn't a
subset of $\Gamma$.
\end{proof}
\section{Totally bounded endoreloids}
The below is a straightforward generalization of the customary definition
of totally bounded sets on uniform spaces (it's proved below that
for uniform spaces the below definitions are equivalent).
\begin{defn}
\index{alpha
-totally bounded@$\alpha$-totally bounded}An endoreloid $f$ is \emph{$\alpha$-totally bounded} ($\totBound_{\alpha}(f)$)
if every~$E\in\up f$ is $\alpha$-thick.
\end{defn}
\begin{defn}
\index{beta
-totally bounded@$\beta$-totally bounded}An endoreloid $f$ is \emph{$\beta$-totally bounded} ($\totBound_{\beta}(f)$)
if every~$E\in\up f$ is $\beta$-thick.\end{defn}
\begin{rem}
We could rewrite the above definitions in a more algebraic way like
$\up f\subseteq\thick_{\alpha}$ (with $\thick_{\alpha}$ would be
defined as a set rather than as a predicate), but we don't really
need this simplification.\end{rem}
\begin{prop}
If an endoreloid is $\alpha$-totally bounded then it is $\beta$-totally
bounded.\end{prop}
\begin{proof}
Because $\thick_{\alpha}(E)\Rightarrow\thick_{\beta}(E)$.\end{proof}
\begin{prop}
If an endoreloid $f$ is reflexive and $\Ob f$ is finite then $f$
is both $\alpha$-totally bounded and $\beta$-totally bounded.\end{prop}
\begin{proof}
It enough to prove that $f$ is $\alpha$-totally bounded. Really,
every $E\in\up f$ is reflexive. Thus $\{x\}\times\{x\}\subseteq\GR E$
for $x\in\Ob f$ and thus $\setcond{\{x\}}{x\in\Ob f}$ is a sought
for finite cover of $\Ob f$.\end{proof}
\begin{obvious}
~
\begin{itemize}
\item A principal endoreloid induced by a $\mathbf{Rel}$-morphism $E$ is
$\alpha$-totally bounded iff $E$ is $\alpha$-thick.
\item A principal endoreloid induced by a $\mathbf{Rel}$-morphism $E$ is
$\beta$-totally bounded iff $E$ is $\beta$-thick.
\end{itemize}
\end{obvious}
\begin{example}
There is a $\beta$-totally bounded endoreloid which is not $\alpha$-totally
bounded.\end{example}
\begin{proof}
It follows from the example above and properties of principal endoreloids.
\end{proof}
\section{Special case of uniform spaces}
Remember that \emph{uniform space} is essentially the same as symmetric,
reflexive and transitive endoreloid.
\begin{thm}
Let $f$ be such an endoreloid that $f\circ f^{-1}\sqsubseteq f$.
Then $f$ is $\alpha$-totally bounded iff it is $\beta$-totally
bounded.\end{thm}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] Proved above.
\item [{$\Leftarrow$}] For every $\epsilon\in\up f$ we have that $\rsupfun{\GR\epsilon}\{c_{0}\},\dots,\rsupfun{\GR\epsilon}\{c_{n}\}$
covers the space. $\rsupfun{\GR\epsilon}\{c_{i}\}\times\rsupfun{\GR\epsilon}\{c_{i}\}\subseteq\GR(\epsilon\circ\epsilon^{-1})$
because for $x\in\rsupfun{\GR\epsilon}\{c_{i}\}$ (the same as $c_{i}\in\rsupfun{\GR\epsilon}\{x\}$)
we have
\[
\rsupfun{\rsupfun{\GR\epsilon}\{c_{i}\}\times\rsupfun{\GR\epsilon}\{c_{i}\}}\{x\}=\rsupfun{\GR\epsilon}\{c_{i}\}\subseteq\rsupfun{\GR\epsilon}\rsupfun{\GR\epsilon^{-1}}\{x\}=\rsupfun{\GR(\epsilon\circ\epsilon^{-1})}\{x\}.
\]
For every $\epsilon'\in\up f$ exists $\epsilon\in\up f$ such that
$\epsilon\circ\epsilon^{-1}\sqsubseteq\epsilon'$ because $f\circ f^{-1}\sqsubseteq f$.
Thus for every $\epsilon'$ we have $\rsupfun{\GR\epsilon}\{c_{i}\}\times\rsupfun{\GR\epsilon}\{c_{i}\}\subseteq\GR\epsilon'$
and so $\rsupfun{\GR\epsilon}\{c_{0}\},\dots,\rsupfun{\GR\epsilon}\{c_{n}\}$
is a sought for finite cover.
\end{description}
\end{proof}
\begin{cor}
A uniform space is $\alpha$-totally bounded iff it is $\beta$-totally
bounded.\end{cor}
\begin{proof}
From the theorem and the definition of uniform spaces.
\end{proof}
Thus we can say about just \emph{totally bounded} uniform spaces (without
specifying whether it is $\alpha$ or $\beta$).
\section{Relationships with other properties}
\begin{thm}
Let $\mu$ and $\nu$ be endoreloids. Let $f$ be a principal $\continuous'(\mu,\nu)$
continuous, monovalued, surjective reloid. Then if $\mu$ is $\beta$-totally
bounded then $\nu$ is also $\beta$-totally bounded.\end{thm}
\begin{proof}
Let $\varphi$ be the monovalued, surjective function, which induces
the reloid~$f$.
We have $\mu\sqsubseteq f^{-1}\circ\nu\circ f$.
Let $F\in\up\nu$. Then there exists $E\in\up\mu$ such that $E\subseteq\varphi^{-1}\circ F\circ\varphi$.
Since $\mu$ is $\beta$-totally bounded, there exists a finite typed
subset $A$ of $\Ob\mu$ such that $\rsupfun{\GR E}A=\Ob\mu$.
We claim $\rsupfun{\GR F}\rsupfun{\varphi}A=\Ob\nu$.
Indeed let $y\in\Ob\nu$ be an arbitrary point. Since $\varphi$ is
surjective, there exists $x\in\Ob\mu$ such that $\varphi x=y$. Since
$\rsupfun{\GR E}A=\Ob\mu$ there exists $a\in A$ such that $a\mathrel{(\GR E)}x$
and thus $a\mathrel{(\varphi^{-1}\circ F\circ\varphi)}x$. So $(\varphi a,y)=(\varphi a,\varphi x)\in\GR F$.
Therefore $y\in\rsupfun{\GR F}\rsupfun{\varphi}A$.\end{proof}
\begin{thm}
Let $\mu$ and $\nu$ be endoreloids. Let $f$ be a principal $\continuous''(\mu,\nu)$
continuous, surjective reloid. Then if $\mu$ is $\alpha$-totally
bounded then $\nu$ is also $\alpha$-totally bounded.\end{thm}
\begin{proof}
Let $\varphi$ be the surjective binary relation which induces the
reloid $f$.
We have $f\circ\mu\circ f^{-1}\sqsubseteq\nu$.
Let $F\in\up\nu$. Then there exists $E\in\up\mu$ such that $\varphi\circ E\circ\varphi^{-1}\subseteq F$.
There exists a finite cover $S$ of $\Ob\mu$ such that $\bigcup\setcond{A\times A}{A\in S}\subseteq\GR E$.
Thus $\varphi\circ\left(\bigcup\setcond{A\times A}{A\in S}\right)\circ\varphi^{-1}\subseteq\GR F$
that is $\bigcup\setcond{\rsupfun{\varphi}A\times\rsupfun{\varphi}A}{A\in S}\subseteq\GR F$.
It remains to prove that $\setcond{\rsupfun{\varphi}A}{A\in S}$ is
a cover of $\Ob\nu$. It is true because $\varphi$ is a surjection
and $S$ is a cover of $\Ob\mu$.
\end{proof}
A stronger statement (principality requirement removed):
\begin{conjecture}
The image of a uniformly continuous entirely defined monovalued surjective
reloid from a ($\alpha$-, $\beta$-)totally bounded endoreloid is
also ($\alpha$-, $\beta$-)totally bounded.
\end{conjecture}
Can we remove the requirement to be entirely defined from the above
conjecture?
\begin{question}
Under which conditions it's true that join of ($\alpha$-, $\beta$-)
totally bounded reloids is also totally bounded?
\end{question}
\section{Additional predicates}
We may consider also the following predicates expressing different
kinds of what is intuitively is understood as boundness. Their usefulness
is unclear, but I present them for completeness.
\begin{itemize}
\item $\totBound_{\alpha}(f)$
\item $\totBound_{\beta}(f)$
\item $\exists n\in\mathbb{N}\forall E\in\up f:\thick_{\alpha}(E^{n})$
\item $\exists n\in\mathbb{N}\forall E\in\up f:\thick_{\beta}(E^{n})$
\item $\exists n\in\mathbb{N}\forall E\in\up f:\thick_{\alpha}(E^{0}\sqcup\ldots\sqcup E^{n})$
\item $\exists n\in\mathbb{N}\forall E\in\up f:\thick_{\beta}(E^{0}\sqcup\ldots\sqcup E^{n})$
\item $\exists n\in\mathbb{N}:\totBound_{\alpha}(f^{n})$
\item $\exists n\in\mathbb{N}:\totBound_{\beta}(f^{n})$
\item $\exists n\in\mathbb{N}:\totBound_{\alpha}(f^{0}\sqcup\ldots\sqcup f^{n})$
\item $\exists n\in\mathbb{N}:\totBound_{\beta}(f^{0}\sqcup\ldots\sqcup f^{n})$
\item $\totBound_{\alpha}(S(f))$
\item $\totBound_{\beta}(S(f))$
\end{itemize}
Some of the above defined predicates are equivalent:
\begin{prop}
~
\begin{itemize}
\item $\exists n\in\mathbb{N}\forall E\in\up f:\thick_{\alpha}(E^{n})\Leftrightarrow\exists n\in\mathbb{N}:\totBound_{\alpha}(f^{n})$.
\item $\exists n\in\mathbb{N}\forall E\in\up f:\thick_{\beta}(E^{n})\Leftrightarrow\exists n\in\mathbb{N}:\totBound_{\beta}(f^{n})$.
\end{itemize}
\end{prop}
\begin{proof}
Because for every $E\in\up f$ some $F\in\up f^{n}$ is a subset of $E^{n}$, we have
\[\forall E\in\up f:\thick_{\alpha}(E^{n})\Leftrightarrow\forall F\in\up f^n:\thick_{\alpha}(F)\]
and likewise for $\thick_{\beta}$.\end{proof}
\begin{prop}
~
\begin{itemize}
\item $\exists n\in\mathbb{N}\forall E\in\up f:\thick_{\alpha}(E^{0}\sqcup\ldots\sqcup E^{n})\Leftrightarrow\exists n\in\mathbb{N}:\totBound_{\alpha}(f^{0}\sqcup\ldots\sqcup f^{n})$
\item $\exists n\in\mathbb{N}\forall E\in\up f:\thick_{\beta}(E^{0}\sqcup\ldots\sqcup E^{n})\Leftrightarrow\exists n\in\mathbb{N}:\totBound_{\beta}(f^{0}\sqcup\ldots\sqcup f^{n})$
\end{itemize}
\end{prop}
\begin{proof}
It's enough to prove
\begin{align}
\label{thk-1}&\forall E\in\up f\exists F\in\up(f^0\sqcup\dots\sqcup f^n):F\sqsubseteq E^{0}\sqcup\ldots\sqcup E^{n} \text{ and}\\
\label{thk-2}&\forall F\in\up(f^0\sqcup\dots\sqcup f^n)\exists E\in\up f:E^{0}\sqcup\ldots\sqcup E^{n}\sqsubseteq F.
\end{align}
For the formula~\eqref{thk-1} take $F=E^0\sqcup\dots\sqcup E^n$.
Let's prove~\eqref{thk-2}. Let $F\in\up(f^0\sqcup\dots\sqcup f^n)$. Using the fact that $F\in\up f^i$ take
$E_i\in\up f$ for $i=0,\dots,n$ such that $E_i^i\sqsubseteq F$ (exercise~\ref{rld-fn} and properties of generalized filter bases) and then $E=E_{0}\sqcap\dots\sqcap E_{n}\in\up f$. We have
$E^{0}\sqcup\ldots\sqcup E^{n}\sqsubseteq F$.
\end{proof}
\begin{prop}
All predicates in the above list are pairwise equivalent in the case
if $f$ is a uniform space.\end{prop}
\begin{proof}
Because $f\circ f=f$
and thus $f^n=f^0\sqcup\dots\sqcup f^n=S(f)=f$.\end{proof}