-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-applications.tex
805 lines (636 loc) · 36.2 KB
/
chap-applications.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
\chapter{Applications of algebraic general topology}
\section{``Hybrid'' objects}
Algebraic general topology allows to construct ``hybrid'' objects of ``continuous'' (as topological spaces)
and discrete (as graphs).
Consider for example $D\sqcup T$ where $D$ is a digraph and $T$ is a topological space.
The $n$-th power $(D\sqcup T)^n$ yields an expression with $2^n$ terms.
So treating $D\sqcup T$ as one object (what becomes possible using algebraic general topology)
rather than the join of two objects may have an exponential benefit for simplicity of formulas.
\section{A way to construct directed topological spaces}
\subsection{Some notation}
I use~$\mathcal{E}$ and $\iota$ notations from {\tt volume-2.pdf}. \fxwarning{Reorder document fragments to describe it before use.}
I remind that $f|_X = f\circ \id_X$ for binary relations, funcoids, and reloid.
$f\parallel_X = f\circ(\mathcal{E}^X)^{-1}$.
$f\square X = \id_X\circ f\circ\id_X^{-1}$.
As proved in {\tt volume-2.pdf}, the following are bijections and moreover isomorphisms (for $R$ being either funcoids or reloids or binary relations):
\begin{enumerate}
\item $\setcond{(f|_X,f\parallel_X)}{f\in R}$;
\item $\setcond{(f\square X,\iota_X f)}{f\in R}$.
\end{enumerate}
As easily follows from these isomorphisms and theorem~\bookref{rect-cont}:
\begin{prop}
For funcoids, reloids, and binary relations:
\begin{enumerate}
\item $f\in\continuous(\mu,\nu)\Rightarrow f\parallel_{A}\in\continuous(\iota_A\mu,\nu)$;
\item $f\in\continuous'(\mu,\nu)\Rightarrow f\parallel_{A}\in\continuous'(\iota_A\mu,\nu)$;
\item $f\in\continuous''(\mu,\nu)\Rightarrow f\parallel_{A}\in\continuous''(\iota_A\mu,\nu)$.
\end{enumerate}
\end{prop}
\subsection{Directed line and directed intervals}
Let $\mathfrak{A}$ be a poset. We will denote $\overline{\mathfrak{A}}=\mathfrak{A}\cup\{-\infty,+\infty\}$ the poset
with two added elements $-\infty$ and $+\infty$, such that $+\infty$ is strictly greater than every element of~$\mathfrak{A}$
and $-\infty$ is strictly less.
\fxnote{Generalize from~$\mathbb{R}$ to a wider class of posets.}
\begin{defn}
For an element~$a$ of a poset~$\mathfrak{A}$
\begin{enumerate}
\item $J_{\geq}(a) = \setcond{x\in\mathfrak{A}}{x\geq a}$;
\item $J_{>}(a) = \setcond{x\in\mathfrak{A}}{x>a}$;
\item $J_{\leq}(a) = \setcond{x\in\mathfrak{A}}{x\leq a}$;
\item $J_{<}(a) = \setcond{x\in\mathfrak{A}}{x<a}$;
\item $J_{\ne}(a) = \setcond{x\in\mathfrak{A}}{x\ne a}$.
\end{enumerate}
\end{defn}
\begin{defn}
Let $a$ be an element of a poset~$\mathfrak{A}$.
\begin{enumerate}
\item $\Delta(a) = \bigsqcap^{\mathscr{F}} \setcond{]x;y[}{x,y\in\overline{\mathfrak{A}}, x<a\land y>a}$;
\item $\Delta_{\geq}(a) = \bigsqcap^{\mathscr{F}} \setcond{[a;y[}{y\in\overline{\mathfrak{A}}, y>a}$;
\item $\Delta_{>}(a) = \bigsqcap^{\mathscr{F}} \setcond{]a;y[}{y\in\overline{\mathfrak{A}}, x<a\land y>a}$;
\item $\Delta_{\leq}(a) = \bigsqcap^{\mathscr{F}} \setcond{]x;a]}{x\in\overline{\mathfrak{A}}, x<a}$;
\item $\Delta_{<}(a) = \bigsqcap^{\mathscr{F}} \setcond{]x;a[}{x\in\overline{\mathfrak{A}}, x<a}$;
\item $\Delta_{\ne}(a) = \Delta(a) \setminus \{a\}$.
\end{enumerate}
\end{defn}
\begin{obvious}
~
\begin{enumerate}
\item $\Delta_{\geq}(a) = \Delta(a)\sqcap^{\mathscr{F}} @J_{\geq}(a)$;
\item $\Delta_{>}(a) = \Delta(a)\sqcap^{\mathscr{F}} @J_{>}(a)$;
\item $\Delta_{\leq}(a) = \Delta(a)\sqcap^{\mathscr{F}} @J_{\leq}(a)$;
\item $\Delta_{<}(a) = \Delta(a)\sqcap^{\mathscr{F}} @J_{<}(a)$;
\item $\Delta_{\ne}(a) = \Delta(a)\sqcap^{\mathscr{F}} @J_{\ne}(a)$.
\end{enumerate}
\end{obvious}
\begin{defn}
~
Given a partial order~$\mathfrak{A}$ and~$x\in\mathfrak{A}$, the following defines complete funcoids:
\begin{enumerate}
\item $\rsupfun{|\mathfrak{A}|}\{x\} = \Delta(x)$;
\item $\rsupfun{|\mathfrak{A}|_{\geq}}\{x\} = \Delta_{\geq}(x)$;
\item $\rsupfun{|\mathfrak{A}|_{>}}\{x\} = \Delta_{>}(x)$;
\item $\rsupfun{|\mathfrak{A}|_{\leq}}\{x\} = \Delta_{\leq}(x)$;
\item $\rsupfun{|\mathfrak{A}|_{<}}\{x\} = \Delta_{<}(x)$;
\item $\rsupfun{|\mathfrak{A}|_{\ne}}\{x\} = \Delta_{\ne}(x)$.
\end{enumerate}
\end{defn}
\begin{prop}
The complete funcoid corresponding to the order topology\footnote{See Wikipedia for a definition of ``Order topology''.}
is equal to $|\mathfrak{A}|$.
\end{prop}
\begin{proof}
Because every open set is a finite union of open intervals, the complete funcoid~$f$ corresponding to the order topology
is described by the formula: $\rsupfun{f}\{x\} = \bigsqcap^{\mathscr{F}}\setcond{]a;b[}{a,b\in\overline{\mathfrak{A}}, a<x\land b>x} =
\Delta(x) = \rsupfun{|\mathfrak{A}|}\{x\}$. Thus $f=|\mathfrak{A}|$.
\end{proof}
\begin{xca}
Show that $|\mathfrak{A}|_{\geq}$ (in general) is not the same as ``right order topology''\footnote{See Wikipedia}.
\end{xca}
\begin{prop}
~
\begin{enumerate}
\item $\rsupfun{|\mathfrak{A}|_{\geq}^{-1}}@X = @\setcond{a\in\mathfrak{A}}{\forall y\in\overline{\mathfrak{A}}:(y>a \Rightarrow X\cap[a;y[\ne\emptyset)}$;
\item $\rsupfun{|\mathfrak{A}|_{>}^{-1}}@X = @\setcond{a\in\mathfrak{A}}{\forall y\in\overline{\mathfrak{A}}:(y>a \Rightarrow X\cap]a;y[\ne\emptyset)}$;
\item $\rsupfun{|\mathfrak{A}|_{\leq}^{-1}}@X = @\setcond{a\in\mathfrak{A}}{\forall x\in\overline{\mathfrak{A}}:(x<a \Rightarrow X\cap]x;a]\ne\emptyset)}$;
\item $\rsupfun{|\mathfrak{A}|_{<}^{-1}}@X = @\setcond{a\in\mathfrak{A}}{\forall x\in\overline{\mathfrak{A}}:(x<a \Rightarrow X\cap]x;a[\ne\emptyset)}$.
\end{enumerate}
\end{prop}
\begin{proof}
$a\in\rsupfun{|\mathfrak{A}|_{\geq}^{-1}}@X \Leftrightarrow
@\{a\} \nasymp \rsupfun{|\mathfrak{A}|_{\geq}^{-1}}@X \Leftrightarrow
\rsupfun{|\mathfrak{A}|_{\geq}}@\{a\} \nasymp @X \Leftrightarrow
\Delta_{\geq}(a) \nasymp @X \Leftrightarrow
\forall y\in\overline{\mathfrak{A}}:(y>a \Rightarrow X\cap[a;y[\ne\emptyset)$.
$a\in\rsupfun{|\mathfrak{A}|_{>}^{-1}}@X \Leftrightarrow
@\{a\} \nasymp \rsupfun{|\mathfrak{A}|_{>}^{-1}}@X \Leftrightarrow
\rsupfun{|\mathfrak{A}|_{>}}@\{a\} \nasymp @X \Leftrightarrow
\Delta_{>}(a) \nasymp @X \Leftrightarrow
\forall y\in\overline{\mathfrak{A}}:(y>a \Rightarrow X\cap]a;y[\ne\emptyset)$.
The rest follows from duality.
\end{proof}
\begin{rem}
On trivial ultrafilters these obviously agree:
\begin{enumerate}
\item $\rsupfun{|\mathbb{R}|_{\geq}}\{x\} = \rsupfun{|\mathbb{R}| \sqcap \geq}\{x\}$;
\item $\rsupfun{|\mathbb{R}|_{>}}\{x\} = \rsupfun{|\mathbb{R}| \sqcap >}\{x\}$;
\item $\rsupfun{|\mathbb{R}|_{\leq}}\{x\} = \rsupfun{|\mathbb{R}| \sqcap \leq}\{x\}$;
\item $\rsupfun{|\mathbb{R}|_{<}}\{x\} = \rsupfun{|\mathbb{R}| \sqcap <}\{x\}$.
\end{enumerate}
\end{rem}
\begin{cor}
~
\begin{enumerate}
\item $|\mathbb{R}|_{\geq} = \Compl(|\mathbb{R}| \sqcap \geq)$;
\item $|\mathbb{R}|_{>} = \Compl(|\mathbb{R}| \sqcap >)$;
\item $|\mathbb{R}|_{\leq} = \Compl(|\mathbb{R}| \sqcap \leq)$;
\item $|\mathbb{R}|_{<} = \Compl(|\mathbb{R}| \sqcap <)$.
\end{enumerate}
\end{cor}
\begin{obvious}
~ \fxnote{also what is the values of $\setminus$ operation}
\begin{enumerate}
\item $|\mathbb{R}|_{\geq} = |\mathbb{R}|_{>} \sqcup 1$;
\item $|\mathbb{R}|_{\leq} = |\mathbb{R}|_{<} \sqcup 1$.
\end{enumerate}
\end{obvious}
\section{Some inequalities}
\fxwarning{Define the ultrafilter ``at the left'' and ``at the right'' of a real number.
Also define ``convergent ultrafilter''.}
Denote $\Delta_{+ \infty} = \bigsqcap_{x \in \mathbb{R}}] x ; + \infty [$ and
$\Delta_{- \infty} = \bigsqcap_{x \in \mathbb{R}}] - \infty ; x [$.
The following proposition calculates $\langle \geq \rangle x$ and $\langle > \rangle x$ for all
kinds of ultrafilters on $\mathbb{R}$:
\begin{prop}
~
\begin{enumerate}
\item\label{g-uf-v-triv} $\supfun{\geq} \{ \alpha \} = [\alpha ; + \infty [$ and
$\supfun{>} \{ \alpha \} = ]\alpha ; + \infty [$.
\item\label{g-uf-v-right} $\supfun{\geq} x = \supfun{>} x = ] \alpha ; + \infty [$
for ultrafilter $x$ at the right of a number $\alpha$.
\item\label{g-uf-v-left} $\supfun{\geq} x = \supfun{>} x = \Delta_{<} (\alpha) \sqcup [\alpha ; + \infty [=
\Delta_{\leq} (\alpha) \sqcup] \alpha ; + \infty [$ for ultrafilter $x$ at the left of a number $\alpha$.
\item\label{g-uf-v-posinf} $\supfun{\geq} x = \supfun{>} x = \Delta_{+ \infty}$ for
ultrafilter $x$ at positive infinity.
\item\label{g-uf-v-neginf} $\supfun{\geq} x = \supfun{>} x = \mathbb{R}$ for
ultrafilter $x$ at negative infinity.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{widedisorder}
\item[\ref{g-uf-v-triv}] Obvious.
\item[\ref{g-uf-v-right}]
\begin{gather*}
\supfun{\geq} x = \bigsqcap^{\mathscr{F}}_{X \in \up x} \supfun{\geq} (X \sqcap] \alpha ; + \infty [) =
\bigsqcap^{\mathscr{F}}_{X \in \up x}] \alpha ; + \infty [=] \alpha ; + \infty [; \\
\supfun{>} x = \bigsqcap^{\mathscr{F}}_{X \in \up x} \supfun{>} (X \sqcap] \alpha ; + \infty [) =
\bigsqcap^{\mathscr{F}}_{X \in \up x}] \alpha ; + \infty [=] \alpha ; + \infty [.
\end{gather*}
\item[\ref{g-uf-v-left}] $\Delta_{<} (\alpha) \sqcup [\alpha ; + \infty [=
\Delta_{\leq} (\alpha) \sqcup] \alpha ; + \infty [$ is obvious.
\[ \supfun{>} x = \bigsqcap^{\mathscr{F}}_{X \in \up x} \supfun{>} X \sqsupseteq \bigsqcap^{\mathscr{F}}_{X \in \up x} (\Delta_{<}
(\alpha) \sqcup] \alpha ; + \infty [) = \Delta_{<} (\alpha) \sqcup] \alpha ; +
\infty [ \]
but $\supfun{\geq} x \sqsubseteq \Delta_{<} (\alpha) \sqcup
[\alpha ; + \infty [$ is obvious. It remains to take into account that
$\supfun{>} x \sqsubseteq \supfun{\geq} x$.
\item[\ref{g-uf-v-posinf}] $\supfun{\geq} x = \bigsqcap^{\mathscr{F}}_{X \in \up x} \supfun{\geq} X =
\bigsqcap^{\mathscr{F}}_{X \in \up x, \inf X \in X}
\supfun{\geq} (X \sqcap] \alpha ; + \infty [) =
\bigsqcap^{\mathscr{F}}_{X \in \up x} [\inf X ; + \infty [=
\bigsqcap^{\mathscr{F}}_{x > \alpha} [x ; + \infty [= \Delta_{+ \infty}$;
$\supfun{>} x = \bigsqcap^{\mathscr{F}}_{X \in \up x} \supfun{>} X =
\bigsqcap^{\mathscr{F}}_{X \in \up x, \inf X \in X}
\supfun{>} (X \sqcap] \alpha ; + \infty [) =
\bigsqcap^{\mathscr{F}}_{X \in \up x} ]\inf X ; + \infty [=
\bigsqcap^{\mathscr{F}}_{x > \alpha} [x ; + \infty [= \Delta_{+ \infty}$.
\item[\ref{g-uf-v-neginf}] $\supfun{\geq} x \sqsupseteq \supfun{>} x =
\bigsqcap^{\mathscr{F}}_{X \in \up x} \supfun{>} X$ but $\supfun{>} X =] - \infty ; + \infty [$ for $X \in \up x$
because $X$ has arbitrarily small elements.
\end{widedisorder}
\end{proof}
\begin{lem}
$\langle \lvert \mathbb{R} \rvert \rangle x \sqsubseteq \supfun{>} x = \supfun{\geq} x$ for every nontrivial ultrafilter $x$.
\end{lem}
\begin{proof}
$\supfun{>} x = \supfun{\geq} x$ follows from the previous proposition.
$\supfun{\lvert \mathbb{R} \rvert } x = \bigsqcap_{X \in \up x} \supfun{\lvert \mathbb{R} \rvert } X =
\bigsqcap_{X \in \up x} \bigsqcup_{y \in X} \Delta (y)$.
Consider cases:
\begin{description}
\item[$x$ is an ultrafilter at the right of some number $\alpha$] \hfill \\ $\langle
| \mathbb{R} | \rangle x = \bigsqcap_{X \in \up x} \bigsqcup_{y \in
X \sqcap] \alpha ; + \infty [} \Delta (y) \sqsubseteq] \alpha ; + \infty
[= \langle \geq \rangle x$ because $\bigsqcup_{y \in X \sqcap] \alpha ; +
\infty [} \Delta (y) \sqsubseteq] \alpha ; + \infty [$.
\item[$x$
is an ultrafilter at the left of some number $\alpha$] \hfill \\ $\langle |
\mathbb{R} | \rangle x \sqsubseteq \Delta (\alpha)$ is obvious. But
$\langle \geq \rangle x \sqsupseteq \Delta (\alpha)$.
\item[$x$ is an ultrafilter at positive infinity] \hfill \\ $\langle | \mathbb{R} |
\rangle x \sqsubseteq \Delta_{+ \infty}$ is obvious. But $\langle \geq
\rangle x = \Delta_{+ \infty}$.
\item[$x$ is an ultrafilter at negative infinity] \hfill \\ Because $\langle \geq
\rangle x =\mathbb{R}$.
\end{description}
\end{proof}
\begin{cor}
$\supfun{ | \mathbb{R} | \sqcap \geq } x = \supfun{ | \mathbb{R} |
} x$ for every nontrivial ultrafilter $x$.
\end{cor}
\begin{proof}
$\supfun{ | \mathbb{R} | \sqcap \geq } x = \supfun{ | \mathbb{R} | } \sqcap \supfun{\geq} x =
\supfun{ | \mathbb{R} | } x$.
\end{proof}
So $\supfun{ | \mathbb{R} | \sqcap \geq }$ and $\supfun{ | \mathbb{R} | }$ agree on all ultrafilters except trivial ones.
\begin{prop}
$| \mathbb{R} |_{>} \sqcap > = | \mathbb{R} |_{>} \sqcap \geq = | \mathbb{R} |_{>}$.
\end{prop}
\begin{proof}
$| \mathbb{R} |_{>} \sqsubseteq \mathord{>}$ because $\rsupfun{| \mathbb{R} |_{>}} x \sqsubseteq \rsupfun{>} x$ and
$| \mathbb{R} |_{>}$ is a complete funcoid.
\end{proof}
\begin{lem}
$\supfun{ | \mathbb{R} |_{>} } x \sqsubset \supfun{ | \mathbb{R} |_{\geq} } x$ for a nontrivial ultrafilter~$x$.
\end{lem}
\begin{proof}
It enough to prove $\supfun{ | \mathbb{R} |_{>} } x \ne \supfun{| \mathbb{R} |_{\geq} } x$.
Take $x$ be an ultrafilter with limit point~$0$ on $\im z$ where $z$ is the sequence $n\mapsto \frac{1}{n}$.
\[ \supfun{ | \mathbb{R} |_{>} } x \sqsubseteq \rsupfun{ | \mathbb{R} |_{>} } \im z =
\bigsqcup_{n\in\im z} \Delta_{>}\left(\frac{1}{n}\right) \sqsubseteq
\bigsqcup_{n\in\im z} \left]\frac{1}{n};\frac{1}{n-1}-\frac{1}{n}\right[ \asymp \im z. \]
Thus $\supfun{ | \mathbb{R} |_{>} } x \asymp \im z$. But
$\supfun{ | \mathbb{R} |_{\geq} } x \sqsubseteq \supfun{=} x \nasymp \im z$.
\end{proof}
\begin{cor}
$| \mathbb{R} |_{>} \sqsubset | \mathbb{R} |_{\geq}$.
\end{cor}
\begin{prop}
$| \mathbb{R} |_{>} \sqsubset | \mathbb{R} |_{\geq} \sqcap >$.
\end{prop}
\begin{proof}
It's enough to prove $| \mathbb{R} |_{>} \neq | \mathbb{R} |_{\geq} \sqcap >$.
Really, $\supfun{ | \mathbb{R} |_{\geq} \sqcap > } x = \supfun{ | \mathbb{R}
|_{\geq} } x \neq \supfun{ | \mathbb{R} |_{>} } x$ (lemma).
\end{proof}
\begin{prop}
~
\begin{enumerate}
\item\label{comp-ord-ge} $| \mathbb{R} |_{\geq} \circ | \mathbb{R} |_{\geq} = | \mathbb{R} |_{\geq}$;
\item\label{comp-ord-gt} $| \mathbb{R} |_{>} \circ | \mathbb{R} |_{>} = | \mathbb{R} |_{>}$;
\item $| \mathbb{R} |_{\geq} \circ | \mathbb{R} |_{>} = | \mathbb{R} |_{>}$;
\item $| \mathbb{R} |_{>} \circ | \mathbb{R} |_{\geq} = | \mathbb{R} |_{>}$.
\end{enumerate}
\end{prop}
\begin{proof}
??
\end{proof}
\begin{conjecture}
~
\begin{enumerate}
\item $(|\mathbb{R}| \sqcap {\geq}) \circ (|\mathbb{R}| \sqcap {\geq}) = |\mathbb{R}| \sqcap {\geq}$.
\item $(|\mathbb{R}| \sqcap {>}) \circ (|\mathbb{R}| \sqcap {>}) = |\mathbb{R}| \sqcap {>}$.
\end{enumerate}
\end{conjecture}
\section{Continuity}
I will say that a property holds on a filter~$\mathcal{A}$ iff there is $A\in\up\mathcal{A}$ on which the property holds.
\fxnote{$f\in\continuous(A,B)\land f\in\continuous(\iota_A|\mathbb{R}|_{\geq},\iota_B|\mathbb{R}|_{\geq}) \Leftrightarrow
(f,f)\in\continuous((A,\iota_A|\mathbb{R}|_{\geq}),(B,\iota_B|\mathbb{R}|_{\geq}))$}
\begin{lem}
Let function~$f:A\rightarrow B$ where
$A,B\in\subsets\mathbb{R}$ and $\iota_A|\mathbb{R}|$~is connected.
\begin{enumerate}
\item $f$ is monotone and $f\in\continuous(\iota_A|\mathbb{R}|,\iota_B|\mathbb{R}|)$ iff
$f\in\continuous(\iota_A|\mathbb{R}|,\iota_B|\mathbb{R}|)\cap\continuous(\iota_{A}|\mathbb{R}|_{\geq},\iota_{B}|\mathbb{R}|_{\geq})$ iff
$f\in\continuous(\iota_A|\mathbb{R}|,\iota_B|\mathbb{R}|)\cap\continuous(\iota_{A}|\mathbb{R}|_{>},\iota_{B}|\mathbb{R}|_{\geq})$ iff
$f\in\continuous(\iota_{A}|\mathbb{R}|_{\geq},\iota_{B}|\mathbb{R}|_{\geq})\cap
\continuous(\iota_{A}|\mathbb{R}|_{\leq},\iota_{B}|\mathbb{R}|_{\leq})$.
\item $f$ is strictly monotone and $f\in\continuous(\iota_A|\mathbb{R}|,\iota_B|\mathbb{R}|)$ iff
$f\in\continuous(\iota_A|\mathbb{R}|,\iota_B|\mathbb{R}|)\cap\continuous(\iota_{A}|\mathbb{R}|_{>},\iota_{B}|\mathbb{R}|_{>})$ iff
$f\in\continuous(\iota_{A}|\mathbb{R}|_{>},\iota_{B}|\mathbb{R}|_{>})\cap
\continuous(\iota_{A}|\mathbb{R}|_{<},\iota_{B}|\mathbb{R}|_{<})$.
\end{enumerate}
\fxnote{Generalize for arbitrary posets.}
\fxnote{Generalize for $f$ being a funcoid.}
\fxnote{Can add more conditions with~$<$.}
\end{lem}
\begin{proof}
Because $f$ is continuous, we have $\rsupfun{f\circ\iota_{A}|\mathbb{R}|}\{x\} \sqsubseteq \rsupfun{\iota_{B}|\mathbb{R}|\circ f}\{x\}$
that is $\rsupfun{f}(A\sqcap\Delta(x)) \sqsubseteq B\sqcap\Delta(f(x))$ for every~$x\in A$.
If $f$ is monotone, we have $\rsupfun{f} \Delta_{\geq}(x) \sqsubseteq [f(x);\infty[$.
Thus $\rsupfun{f} (A\sqcap\Delta_{\geq}(x)) \sqsubseteq B\sqcap\Delta_{\geq}(f(x))$, that is
$\rsupfun{f\circ \iota_{A}|\mathbb{R}|_{\geq}}\{x\} \sqsubseteq \rsupfun{\iota_{B}|\mathbb{R}|_{\geq}\circ f}\{x\}$, thus
$f\in\continuous(\iota_{A}|\mathbb{R}|_{\geq},\iota_{B}|\mathbb{R}|_{\geq})$.
If $f$ is strictly monotone, we have $\rsupfun{f} \Delta_{>}(x) \sqsubseteq ]f(x);\infty[$.
Thus $\rsupfun{f} \Delta_{>}(x) \sqsubseteq \Delta_{>}(f(x))$, that is
$\rsupfun{f\circ \iota_{A}|\mathbb{R}|_{>}}\{x\} \sqsubseteq \rsupfun{\iota_{B}|\mathbb{R}|_{>}\circ f}\{x\}$, thus
$f\in\continuous(\iota_{A}|\mathbb{R}|_{>},\iota_{B}|\mathbb{R}|_{>})$.
Let now $f\in\continuous(\iota_{A}|\mathbb{R}|_{\geq},\iota_{B}|\mathbb{R}|_{\geq})$.
Take any~$a\in {A}$ and let $c=\sup\setcond{b\in {B}}{b\geq a, \forall x\in[a;b[: f(x)\geq f(a)}$ (makes sense because $A$~is connected).
It's enough to prove that $c$ is the right endpoint (finite or infinite) of~${A}$.
Indeed by continuity $f(a)\leq f(c)$ and if $c$ is not already the right endpoint of~${A}$, then
there is $b'>c$ such that $\forall x\in[c;b'[: f(x)\geq f(c)$ (makes sense because $A$~is connected).
So we have $\forall x\in[a;b'[: f(x)\geq f(c)$ what contradicts to the above.
So $f$ is monotone on the entire~${A}$.
$f\in\continuous(\iota_{A}|\mathbb{R}|_{\geq},\iota_{B}|\mathbb{R}|_{\geq}) \Rightarrow f\in\continuous(\iota_{A}|\mathbb{R}|_{>},\iota_{B}|\mathbb{R}|_{\geq})$ is obvious. Reversely
$f\in\continuous(\iota_{A}|\mathbb{R}|_{>},\iota_{B}|\mathbb{R}|_{\geq}) \Leftrightarrow
f\circ \iota_{A}|\mathbb{R}|_{>} \sqsubseteq \iota_{B}|\mathbb{R}|_{\geq}\circ f \Leftrightarrow
\forall x\in A: \supfun{f}\rsupfun{\iota_{A}|\mathbb{R}|_{>}}\{x\} \sqsubseteq \rsupfun{\iota_{B}|\mathbb{R}|_{\geq}}\rsupfun{f}\{x\} \Leftrightarrow
\forall x\in A: \supfun{f}(A\sqcap\Delta_{>}(x)) \sqsubseteq B\sqcap\Delta_{\geq}f(x) \Leftrightarrow
\forall x\in A: \supfun{f}(A\sqcap\Delta_{>}(x)) \sqcup \{f(x)\} \sqsubseteq B\sqcap\Delta_{\geq}f(x) \Leftrightarrow
\forall x\in A: \supfun{f}((A\sqcap\Delta_{>}(x)) \sqcup \{x\}) \sqsubseteq B\sqcap\Delta_{\geq}f(x) \Leftrightarrow
\forall x\in A: \supfun{f}(A\sqcap\Delta_{\geq}(x)) \sqsubseteq B\sqcap\Delta_{\geq}f(x) \Leftrightarrow
\forall x\in A: \supfun{f}\rsupfun{\iota_{A}|\mathbb{R}|_{\geq}}\{x\} \sqsubseteq \rsupfun{\iota_{B}|\mathbb{R}|_{\geq}}\rsupfun{f}\{x\} \Leftrightarrow
f\circ \iota_{A}|\mathbb{R}|_{\geq} \sqsubseteq \iota_{B}|\mathbb{R}|_{\geq}\circ f \Leftrightarrow
f\in\continuous(\iota_{A}|\mathbb{R}|_{\geq},\iota_{B}|\mathbb{R}|_{\geq})$.
Let $f\in\continuous(\iota_{A}|\mathbb{R}|_{>},\iota_{B}|\mathbb{R}|_{>})$. Then $f\in\continuous(\iota_{A}|\mathbb{R}|_{>},\iota_{B}|\mathbb{R}|_{\geq})$ and thus it is monotone.
We need to prove that $f$ is strictly monotone.
Suppose the contrary. Then there is a nonempty interval $[p;q]\subseteq {A}$ such that $f$ is constant on this interval.
But this is impossible because $f\in\continuous(\iota_{A}|\mathbb{R}|_{>},\iota_{B}|\mathbb{R}|_{>})$.
Prove that $f\in\continuous(\iota_{A}|\mathbb{R}|_{\geq},\iota_{B}|\mathbb{R}|_{\geq})\cap
\continuous(\iota_{A}|\mathbb{R}|_{\leq},\iota_{B}|\mathbb{R}|_{\leq})$ implies
$f\in\continuous({A},{B})$. Really, it implies
$\supfun{f}(A\sqcap\Delta_{\leq}(x))\sqsubseteq B\sqcap\Delta_{\leq}(fx)$ and $\supfun{f}(A\sqcap\Delta_{\geq}(x))\sqsubseteq B\sqcap\Delta_{\geq}(fx)$
thus $\supfun{f}(A\sqcap\Delta(x)) = \supfun{f}(A\sqcap(\Delta_{\leq}(x)\sqcup\{x\}\sqcup\Delta_{\geq}(x))) \sqsubseteq
B\sqcap(\Delta_{\leq}f(x)\sqcup\{f(x)\}\sqcup\Delta_{\geq}f(x)) =
B\sqcap\Delta(f(x))$.
Prove that $f\in\continuous(\iota_{A}|\mathbb{R}|_{>},\iota_{B}|\mathbb{R}|_{>})\cap
\continuous(\iota_{A}|\mathbb{R}|_{<},\iota_{B}|\mathbb{R}|_{<})$
$f\in\continuous({A},{B})$. Really, it implies
$\supfun{f}(A\sqcap\Delta_{<}(x))\sqsubseteq B\sqcap\Delta_{<}(fx)$ and $\supfun{f}(A\sqcap\Delta_{>}(x))\sqsubseteq B\sqcap\Delta_{>}(fx)$
thus $\supfun{f}(A\sqcap\Delta(x)) = \supfun{f}(A\sqcap(\Delta_{<}(x)\sqcup\{x\}\sqcup\Delta_{>}(x))) \sqsubseteq
B\sqcap(\Delta_{<}f(x)\sqcup\{f(x)\}\sqcup\Delta_{>}f(x)) = B\sqcap\Delta(f(x))$.
\end{proof}
\begin{thm}
\fxwarning{Counterexample: \url{https://math.stackexchange.com/a/3702872/4876}}
Let function~$f:A\rightarrow B$ where $A,B\in\subsets\mathbb{R}$.
\begin{enumerate}
\item $f$ is locally monotone and $f\in\continuous(\iota_A|\mathbb{R}|,\iota_B|\mathbb{R}|)$ iff
$f\in\continuous(\iota_A|\mathbb{R}|,\iota_B|\mathbb{R}|)\cap\continuous(\iota_A|\mathbb{R}|_{\geq},\iota_B|\mathbb{R}|_{\geq})$ iff
$f\in\continuous(\iota_A|\mathbb{R}|,\iota_B|\mathbb{R}|)\cap\continuous(\iota_A|\mathbb{R}|_{>},\iota_B|\mathbb{R}|_{\geq})$ iff
$f\in\continuous(\iota_A|\mathbb{R}|_{\geq},\iota_B|\mathbb{R}|_{\geq})\cap
\continuous(\iota_A|\mathbb{R}|_{\leq},\iota_B|\mathbb{R}|_{\leq})$.
\item $f$ is locally strictly monotone and $f\in\continuous(\iota_A|\mathbb{R}|,\iota_B|\mathbb{R}|)$ iff
$f\in\continuous(\iota_A|\mathbb{R}|,\iota_B|\mathbb{R}|)\cap\continuous(\iota_A|\mathbb{R}|_{>},\iota_B|\mathbb{R}|_{>})$ iff
$f\in\continuous(\iota_A|\mathbb{R}|_{>},\iota_B|\mathbb{R}|_{>})\cap
\continuous(\iota_A|\mathbb{R}|_{<},\iota_B|\mathbb{R}|_{<})$.
\end{enumerate}
\end{thm}
\begin{proof}
By the lemma it is (strictly) monotone on each connected component.
\fxerror{It is not enough if for example $A=\mathbb{Q}$.}
\end{proof}
See also related math.SE questions:
\begin{enumerate}
\item \url{http://math.stackexchange.com/q/1473668/4876}
\item \url{http://math.stackexchange.com/a/1872906/4876}
\item \url{http://math.stackexchange.com/q/1875975/4876}
\end{enumerate}
\subsection{Directed topological spaces}
Directed topological spaces are defined at\\
\url{http://ncatlab.org/nlab/show/directed+topological+space}
\begin{defn}
A \emph{directed topological space} (or \emph{d-space} for short) is a pair $(X,d)$ of a topological space~$X$ and
a set $d\subseteq\continuous([0;1],X)$ (called \emph{directed paths} or \emph{d-paths}) of paths in~$X$ such that
\begin{enumerate}
\item (constant paths) every constant map $[0;1]\to X$ is directed;
\item (reparameterization) $d$ is closed under composition with increasing continuous maps $[0;1]\to [0;1]$;
\item (concatenation) $d$ is closed under path-concatenation: if the d-paths $a$, $b$ are consecutive in $X$ ($a(1)=b(0)$), then their ordinary concatenation $a+b$ is also a d-path
\begin{gather*}
(a+b)(t) = a(2t),\,\text{if}\, 0\le t\le \frac{1}{2}, \\
(a+b)(t) = b(2t-1),\,\text{if}\, \frac{1}{2}\le t\le 1.
\end{gather*}
\end{enumerate}
\end{defn}
I propose a new way to construct a directed topological space. My way is more geometric/topological as it does not involve dealing with particular paths.
\begin{defn}
Let $ T$ be the complete endofuncoid corresponding to a topological space
and $\nu\sqsubseteq T$ be its ``subfuncoid''. The $\mathrm{d}$-space $\operatorname{(dir)}(T,\nu)$ induced by the pair $(T,\nu)$
consists of~$ T$ and paths $f\in\continuous([0;1], T) \cap \continuous(|[0;1]|_{\geq}, \nu)$
such that $f(0)=f(1)$.
\end{defn}
\begin{prop}
It is really a $\mathrm{d}$-space.
\end{prop}
\begin{proof}
Every $\mathrm{d}$-path is continuous.
Constant path are $\mathrm{d}$-paths because $\nu$ is reflexive.
Every reparameterization is a $\mathrm{d}$-path because they are $\continuous(|[0;1]|_{\geq}, \nu)$ and we can apply the theorem about
composition of continuous functions.
Every concatenation is a $\mathrm{d}$-path. Denote
$f_0 = \mylambda{t}{[0;\frac{1}{2}]}{a(2t)}$ and $f_1 = \mylambda{t}{[\frac{1}{2};1]}{b(2t-1)}$.
Obviously $f_0,f_1 \in \continuous([0;1],\mu) \cap \continuous(|[0;1]|_{\geq}, \nu)$.
Then we conclude that $a+b = f_1\sqcup f_1$ is in $f_0,f_1 \in \continuous([0;1],\mu) \cap \continuous(|[0;1]|_{\geq}, \nu)$
using the fact that the operation $\circ$ is distributive over $\sqcup$.
\end{proof}
Below we show that not every $\mathrm{d}$-space is induced by a pair of an endofuncoid and its subfuncoid.
But are $\mathrm{d}$-spaces not represented this way good anything except counterexamples?
Let now we have a $\mathrm{d}$-space $(X,d)$. Define funcoid~$\nu$ corresponding to the $\mathrm{d}$-space by the formula
$\nu = \bigsqcup_{a\in d}(a\circ |\mathbb{R}|_{\geq}\circ a^{-1})$.
\begin{example}
The two directed topological spaces, constructed from a fixed topological space and two different reflexive funcoids,
are the same.
\end{example}
\begin{proof}
Consider the indiscrete topology~$T$ on $\mathbb{R}$ and the funcoids~$1^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}$
and $1^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}\sqcup(\{0\}\times^{\mathsf{FCD}} \Delta_{\geq})$.
The only $\mathrm{d}$-paths in both these settings are constant functions.
\end{proof}
\begin{example}
A $\mathrm{d}$-space is not determined by the induced funcoid.
\end{example}
\begin{proof}
The following a $\mathrm{d}$-space induces the same funcoid as the $\mathrm{d}$-space of all paths on the plane.
Consider a plane $\mathbb{R}^2$ with the usual topology. Let $\mathrm{d}$-paths be paths lying inside a polygonal chain (in the plane).
\end{proof}
\begin{conjecture}
A $\mathrm{d}$-path~$a$ is determined by the funcoids (where $x$ spans $[0;1]$)
\[ (\mylambda{t}{\mathbb{R}}{a(x+t)})|_{\Delta(0)}. \]
\end{conjecture}
\section{A way to construct directed topological spaces}
I propose a new way to construct a directed topological space. My way is more geometric/topological as it does not involve dealing with particular paths.
\begin{conjecture}
Every directed topological space can be constructed in the below described way.
\end{conjecture}
Consider topological space $T$ and its subfuncoid $F$ (that is $F$ is a funcoid which is less that $T$ in the order of funcoids).
Note that in our consideration $F$ is an endofuncoid (its source and destination are the same).
Then a directed path from point $A$ to point $B$ is defined as a continuous function $f$ from $[0;1]$ to $F$ such that $f(0)=A$ and $f(1)=B$.
\fxwarning{Specify whether the interval $[0;1]$ is treated as a proximity, pretopology, or preclosure.}
Because $F$ is less that $T$, we have that every directed path is a path.
\begin{conjecture}
The two directed topological spaces, constructed from a fixed topological space and two different funcoids,
are different.
\end{conjecture}
For a counter-example of (which of the two?) the conjecture consider funcoid $T\sqcap(\mathbb{Q}\times^{\mathsf{FCD}}\mathbb{Q})$
where $T$ is the usual topology on real line.We need to consider stability of existence and uniqueness of a path under transformations of our funcoid and
under transformations of the vector field. Can this be a step to solve Navier-Stokes existence and smoothness problems?
\section{Integral curves}
We will consider paths in a normed vector space~$V$.
\begin{defn}
Let $D$ be a connected subset of~$\mathbb{R}$. A \emph{path} is a function $D\rightarrow V$.
\end{defn}
Let $d$ be a vector field in a normed vector space~$V$.
\begin{defn}
\emph{Integral curve} of a vector field~$d$ is a differentiable function $f:D\rightarrow V$ such that $f'(t)=d(f(t))$ for every $t\in D$.
\end{defn}
\begin{defn}
The definition of \emph{right side integral curve} is the above definition with right derivative of~$f$ instead of derivative~$f'$.
\emph{Left side integral curve} is defined similarly.
\end{defn}
\subsection{Path reparameterization}
$C^1$~is a function which has continuous derivative on every point of the domain.
By $D^1$ I will denote a $C^1$ function whose derivative is either nonzero at every point or is zero everywhere.
\begin{defn}
A \emph{reparameterization} of a $C^1$ path is a bijective $C^1$ function $\phi:D\rightarrow D$ such that
$\phi'(t)>0$. A curve $f_2$ is called a reparametrized curve $f_1$ if there is a reparameterization~$\phi$ such that
$f_2=f_1\circ\phi$.
\end{defn}
It is well known that this defines an equivalence relation of functions.
\begin{prop}
Reparameterization of $D^1$ function is $D^1$.
\end{prop}
\begin{proof}
If the function has zero derivative, it is obvious.
Let $f_1$ has everywhere nonzero derivative. Then $f_2'(t) = f_1'(\phi(t))\phi'(t)$ what is trivially nonzero.
\end{proof}
\begin{defn}
Vectors~$p$ and~$q$ have the \emph{same direction} ($p\upuparrows q$) iff there exists a strictly positive real~$c$ such that $p=cq$.
\end{defn}
\begin{obvious}
Being same direction is an equivalence relation.
\end{obvious}
\begin{obvious}
The only vector with the same direction as the zero vector is zero vector.
\end{obvious}
\begin{thm}
A $D^1$ function~$y$ is some reparameterization of a $D^1$ integral curve~$x$ of a continuous vector field~$d$ iff
$y'(t)\upuparrows d(y(t))$ that is vectors~$y'(t)$ and $d(y(t))$ have the same direction (for every $t$).
\end{thm}
\begin{proof}
If $y$ is a reparameterization of~$x$, then $y(t)=x(\phi(t))$. Thus $y'(t)=x'(\phi(t))\phi'(t)=d(x(\phi(t)))\phi'(t)=d(y(t))\phi'(t)$.
So $y'(t)\upuparrows d(y(t))$ because $\phi'(t)>0$.
Let now $x'(t)\upuparrows d(x(t))$ that is that is there is a strictly positive function $c(t)$ such that
$x'(t) = c(t) d(x(t))$.
If $x'(t)$ is zero everywhere, then $d(x(t))=0$ and thus $x'(t)=d(x(t))$ that is $x$ is an Integral curve.
Note that $y$ is a reparameterization of itself.
We can assume that $x'(t)\ne 0$ everywhere. Then $F(x(t))\ne 0$. We have
that $c(t) = \frac{||x'(t)||}{||d(x(t))||}$ is a continuous function. \fxnote{Does it work for non-normed spaces?}
Let $y(u(t)) = x(t)$, where \[ u(t)=\int_0^t c(s)ds, \]
which is defined and finite because $c$ is continuous and monotone (thus having inverse defined on its image)
because $c$ is positive.
Then
\begin{align*}
y'(u(t)) u'(t) &= x'(t) \\
&= c(t) d(x(t)) \text{, so}\\
y'(u(t)) c(t) &= c(t) d(y(u(t))) \\
y'(u(t)) &= d(y(u(t)))
\end{align*}
and letting $s=u(t)$ we have $y'(s)=d(y(s))$ for a reparameterization~$y$ of~$x$.
\end{proof}
\subsection{Vector space with additional coordinate}
Consider the normed vector space with additional coordinate~$t$.
Our vector field~$d(t)$ induces vector field~$\hat{d}(t,v)=(1,d(v))$ in this space. Also $\hat{f}(t)=(t,f(t))$.
\begin{prop}
Let $f$ be a $D^1$ function. $f$ is an integral curve of~$d$ iff $\hat{f}$ is a reparametrized integral curve of~$\hat{d}$.
\end{prop}
\begin{proof}
First note that $\hat{f}$ always has a nonzero derivative.
$\hat{f}'(t)\upuparrows \hat{d}(\hat{f}(t)) \Leftrightarrow (1,f'(t))\upuparrows (1,d(f(t))) \Leftrightarrow
f'(t)=d(f(t))$.
\end{proof}
Thus we have reduced (for $D^1$ paths) being an integral curve to being a reparametrized integral curve.
We will also describe being a reparametrized integral curve topologically (through funcoids).
\subsection{Topological description of $C^1$ curves}
Explicitly construct this funcoid as follows:
$R(d,\phi) = \setcond{v\in V}{\widehat{vd}<\phi, v\ne 0}$ for $d\ne 0$ and $R(0,\phi) = \{0\}$,
where $\widehat{ab}$ is the angle between the vectors $a$ and $b$,
for a direction~$d$ and an angle~$\phi$.
\begin{defn}
$W(d) = \bigsqcap^{\mathsf{RLD}}\setcond{R(d,\phi)}{\phi\in\mathbb{R},\phi>0} \sqcap \bigsqcap^{\mathsf{RLD}}_{r>0}B_r(0)$.
\fxnote{This is defined for infinite dimensional case.}
\fxnote{Consider also $\mathsf{FCD}$ instead of $\mathsf{RLD}$.}
\end{defn}
\begin{prop}
For finite dimensional case~$\mathbb{R}^n$ we have
$W(d) = \bigsqcap^{\mathsf{RLD}}\setcond{R(d,\phi)}{\phi\in\mathbb{R},\phi>0} \sqcap \Delta^{(\mathsf{RLD})n}$
where \[ \Delta^{(\mathsf{RLD})n} = \underbrace{\Delta\times^{\mathsf{RLD}}\dots\times^{\mathsf{RLD}}\Delta}_{n\text{ times}}. \]
\end{prop}
\begin{proof}
??
\end{proof}
Finally our funcoids are the complete funcoids~$Q_+$ and~$Q_-$ described by the formulas
\[
\rsupfun{Q_+}@\{p\} = \supfun{p+} W(d(p)) \quad\text{and}\quad \rsupfun{Q_-}@\{p\} = \supfun{p+} W(-d(p)).
\]
Here $\Delta$ is taken from the ``counter-examples'' section.
In other words,
\[
Q_+ = \bigsqcup_{p\in\mathbb{R}} (@\{p\}\times^{\mathsf{FCD}}\supfun{p+}{W(d(p))});
\quad
Q_- = \bigsqcup_{p\in\mathbb{R}} (@\{p\}\times^{\mathsf{FCD}}\supfun{p+}{W(-d(p))}).
\]
That is $\rsupfun{Q_+}@\{p\}$ and $\rsupfun{Q_-}@\{p\}$ are something like infinitely small spherical sectors
(with infinitely small aperture and infinitely small radius).
\fxnote{Describe the co-complete funcoids reverse to these complete funcoids.}
\begin{thm}
A $D^1$ curve~$f$ is an reparametrized integral curve for a direction field~$d$ iff
$f\in\continuous(\iota_D|\mathbb{R}|_{>},Q_+)\cap\continuous(\iota_D|\mathbb{R}|_{<},Q_-)$.
\end{thm}
\begin{proof}
Equivalently transform $f\in\continuous(\iota_D|\mathbb{R}|,Q_+)$; $f\circ \iota_D|\mathbb{R}|\sqsubseteq Q_+\circ f$;
$\rsupfun{f\circ \iota_D|\mathbb{R}|}@\{t\}\sqsubseteq \rsupfun{Q_+\circ f}@\{t\}$;
$\rsupfun{f}\Delta_{>}(t)\sqcap D\sqsubseteq \rsupfun{Q_+}f(t)$;
$\rsupfun{f}\Delta_{>}(t)\sqsubseteq \rsupfun{Q_+}f(t)$;
$\rsupfun{f}\Delta_{>}(t)\sqsubseteq f(t)+W(D(f(t)))$;
$\rsupfun{f}\Delta_{>}(t)-f(t)\sqsubseteq W(D(f(t)))$;
\[ \forall r>0, \phi>0 \exists\delta>0: \rsupfun{f}(]t;t+\delta[)-f(t)\subseteq R(d(f(t)),\phi) \cap B_r(f(t)); \]
\[ \forall r>0, \phi>0 \exists\delta>0 \forall 0<\gamma<\delta: \rsupfun{f}(]t;t+\gamma[)-f(t)\subseteq R(d(f(t)),\phi) \cap B_r(f(t)); \]
\[ \forall r>0, \phi>0 \exists\delta>0 \forall 0<\gamma<\delta: \frac{\rsupfun{f}(]t;t+\gamma[)-f(t)}{\gamma}\subseteq R(d(f(t)),\phi) \cap B_{r/\delta}(f(t)); \]
\[ \forall r>0, \phi>0 \exists\delta>0: \partial_+ f(t)\subseteq R(d(f(t)),\phi) \cap B_{r/\delta}(f(t)); \]
\[ \forall r>0, \phi>0: \partial_+ f(t)\subseteq R(d(f(t)),\phi); \]
\[ \partial_+ f(t) \upuparrows d(f(t)) \]
where $\partial_+$ is the right derivative.
In the same way we derive that $\continuous(|\mathbb{R}|_{<},Q_-)\Leftrightarrow \partial_- f(t) \upuparrows d(f(t))$.
Thus $f'(t) \upuparrows d(f(t))$ iff $f\in\continuous(|\mathbb{R}|_{>},Q_+)\cap\continuous(|\mathbb{R}|_{<},Q_-)$.
\end{proof}
\subsection{$C^n$ curves}
We consider the differential equation $f'(t) = d(f(t))$.
We can consider this equation in any topological vector
space~$V$ (\url{https://en.wikipedia.org/wiki/Frechet_derivative}), see also
\url{https://math.stackexchange.com/q/2977274/4876}.
Note that I am not an expert in topological vector spaces
and thus my naive generalizations may be wrong in details.
$n$-th derivative $f^{(n)}(t)=d_n(f(t))$;
$f^{(n+1)}(t)=d_n'(f(t))\circ f'(t)=d_n'(f(t))\circ d(f(t))$.
So $d_{n+1}(y)=d_n'(y)\circ d(y)$.
Given a point~$y\in V$
define \[R^n(y) = \setcond{v\in V}{\widehat{vd_0(y)}<
\frac{d_1}{1!}(y)|v|+\frac{d_2(y)}{2!}|v|^2+\dots+\frac{d_{n-1}(y)}{(n-1)!}|v|^{n-1}+O(|v|^n), v\ne 0}\] for $d_0(y)\ne 0$ and $R^n = \{0\}$ if $d_0(y)=0$.
\begin{defn}
$R^\infty(y) = R^0(y)\sqcap R^1(y)\sqcap R^2(y)\sqcap\dots$.
\end{defn}
\fxerror{It does not work:
\url{https://math.stackexchange.com/a/2978532/4876}.}
\begin{defn}
$W^n(y) = R^n(y) \sqcap \bigsqcap^{\mathsf{RLD}}_{r>0}B_r(0)$;
$W^\infty(y) = R^\infty(y) \sqcap \bigsqcap^{\mathsf{RLD}}_{r>0}B_r(0)$.
\end{defn}
Finally our funcoids are the complete funcoids~$Q_+^n$ and~$Q_-^n$ described by the formulas
\[
\rsupfun{Q_+^n}@\{p\} = \supfun{p+} W^n(p) \quad\text{and}\quad \rsupfun{Q_-^n}@\{p\} = \supfun{p+} {W^-}^n(p)
\]
where $W^-$ is $W$ for the reverse vector field~$-d(y)$.
\fxnote{Related questions:
\url{http://math.stackexchange.com/q/1884856/4876}
\url{http://math.stackexchange.com/q/107460/4876}
\url{http://mathoverflow.net/q/88501}}
\begin{lem}
Let for every $x$ in the domain of the path for small $t > 0$ we have $f (x + t) \in R^n (F (f (x)))$ and $f (x - t) \in R^n (- F (f (x)))$.
Then $f$ is $C^n$ smooth.
\end{lem}
\begin{proof}
\fxerror{Not yet proved!}\\
See also \url{http://math.stackexchange.com/q/1884930/4876}.
\end{proof}
\begin{conjecture}
A path~$f$ is conforming to the above differentiable
equation and $C^n$ (where~$n$ is natural or infinite) smooth iff $f\in\continuous(\iota_D|\mathbb{R}|_{>},Q_+^n)\cap\continuous(\iota_D|\mathbb{R}|_{<},Q_-^n)$.
\end{conjecture}
\begin{proof}
Reverse implication follows from the lemma.
Let now a path~$f$ is $C^n$. Then
\[
f(x+t) = \sum_{i=0}^n f^{(i)}(x)\frac{t^i}{i!} + o(t^i) =
f(x)+f'(x)t + \sum_{i=2}^n f^{(i)}(x)\frac{t^i}{i!} + o(t^i)
\]
\end{proof}
\subsection{Plural funcoids}
Take $I_+$ and $Q_+$ as described above in forward direction and $I_-$ and $Q_-$ in backward direction. Then
\[ f\in\continuous(I_+,Q_+)\land f\in\continuous(I_-,Q_-) \Leftrightarrow f\times f\in\continuous(I_+\times^{(A)}I_-,Q_+\times^{(A)}Q_-)? \]
To describe the above we can introduce new term \emph{plural funcoids}. This is simply a map
from an index set to funcoids. Composition is defined component-wise. Order is defined as product order.
Well, do we need this? Isn't it the same as infimum product of funcoids?
\subsection{Multiple allowed directions per point}
\[ \rsupfun{Q}@\{p\} = \bigsqcup_{d\in d(p)} \supfun{p+} W(d). \]
It seems (check!) that solutions not only of differential equations but also of difference equations can be
expressed as paths in funcoids.