forked from 0aqz0/neural-retargeting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_realtime.py
213 lines (183 loc) · 8.26 KB
/
inference_realtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import torch.nn as nn
import torch_geometric.transforms as transforms
import argparse
# import os
from torch_geometric.data import Data, Batch
from models import model as model1
from models.parallel import DataParallel
# from models.loss import CollisionLoss, JointLimitLoss
import dataset
#from dataset import Degree2Radian, Normalize, parse_bvh_to_frame, parse_bvh_to_motion, parse_bvh_to_hand, parse_h5, parse_h5_temporal
from dataset import Normalize, parse_h5
from parse_from_Kinect import parse_from_Kinect
from utils.config import cfg
from utils.util import create_folder
import torch
import torch.nn as nn
import torch.optim as optim
import torch_geometric.transforms as transforms
from torch_geometric.data import Data, Batch
from tensorboardX import SummaryWriter
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import mpl_toolkits.mplot3d.axes3d as p3
import numpy as np
import h5py
import argparse
import logging
import time
import os
import copy
from datetime import datetime
import dataset
from dataset import Normalize, parse_h5
from models import model
from models.loss import CollisionLoss, JointLimitLoss, RegLoss
from train import train_epoch
from utils.config import cfg
from utils.util import create_folder
# Argument parse
parser = argparse.ArgumentParser(description='Inference with trained model')
parser.add_argument('--cfg', default='configs/inference/yumi.yaml', type=str, help='Path to configuration file')
args = parser.parse_args()
# Configurations parse
cfg.merge_from_file(args.cfg)
cfg.freeze()
print(cfg)
# Create folder
create_folder(cfg.OTHERS.SAVE)
create_folder(cfg.OTHERS.LOG)
create_folder(cfg.OTHERS.SUMMARY)
# Create logger & tensorboard writer
logging.basicConfig(level=logging.INFO, format="%(message)s", handlers=[logging.FileHandler(os.path.join(cfg.OTHERS.LOG, "{:%Y-%m-%d_%H-%M-%S}.log".format(datetime.now()))), logging.StreamHandler()])
logger = logging.getLogger()
writer = SummaryWriter(os.path.join(cfg.OTHERS.SUMMARY, "{:%Y-%m-%d_%H-%M-%S}".format(datetime.now())))
# Create logger & tensorboard writer
logging.basicConfig(level=logging.INFO, format="%(message)s", handlers=[logging.FileHandler(os.path.join(cfg.OTHERS.LOG, "{:%Y-%m-%d_%H-%M-%S}.log".format(datetime.now()))), logging.StreamHandler()])
logger = logging.getLogger()
writer = SummaryWriter(os.path.join(cfg.OTHERS.SUMMARY, "{:%Y-%m-%d_%H-%M-%S}".format(datetime.now())))
class inference:
# Argument parse
parser = argparse.ArgumentParser(description='Inference with trained model')
parser.add_argument('--cfg', default='configs/inference/yumi.yaml', type=str, help='Path to configuration file')
args = parser.parse_args()
# Configurations parse
cfg.merge_from_file(args.cfg)
cfg.freeze()
print(cfg)
pre_transform = transforms.Compose([Normalize()])
targets = sorted(
[target for target in getattr(dataset, cfg.DATASET.TEST.TARGET_NAME)(root=cfg.DATASET.TEST.TARGET_PATH)],
key=lambda target: target.skeleton_type)
# Device setting
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def __init__(self):
# create folder
create_folder(cfg.INFERENCE.SAVE)
# Load data
transform = None
# Create model
self.model = getattr(model1, cfg.MODEL.NAME)().to(self.device)
# Run the model parallelly
print('Let\'s use {} GPUs!'.format(torch.cuda.device_count()))
# self.model = DataParallel(self.model).to(inference.device)
# Load checkpoint
if cfg.MODEL.CHECKPOINT is not None:
self.model.load_state_dict(torch.load(cfg.MODEL.CHECKPOINT))
# Create loss criterion
# reconstruction loss
rec_criterion = nn.MSELoss()
# end effector loss
ee_criterion = nn.MSELoss()
def step(self,pos,quat):
# one step Inference
with torch.no_grad():
# get data from kinect
data, l_hand_angle, r_hand_angle = parse_from_Kinect(pos,quat,filename=cfg.INFERENCE.MOTION.SOURCE)
# process of data
data_list = data
indices = [idx for idx in range(0, len(data_list), 1)]
data_loader = [data_list[idx: idx + cfg.HYPER.BATCH_SIZE] for idx in indices]
# target = inference.targets[cfg.INFERENCE.TARGET]
target = inference.targets[0]
target_list = []
for data in data_list:
target_list.append(target)
#
# # forward
# ang, _, _, _, _, rot, pos = self.model(data_list, target_list)
#latent space
# store initial z
self.model.eval()
z_all = []
for batch_idx, data_list in enumerate(data_loader):
for target_idx, target in enumerate(target_list):
# fetch target
target_list = [target for data in data_list]
# forward
z = self.model.encode(Batch.from_data_list(data_list).to(self.device)).detach()
z.requires_grad = True
z_all.append(z)
# Create loss criterion
# end effector loss
ee_criterion = nn.MSELoss() if cfg.LOSS.EE else None
# vector similarity loss
vec_criterion = nn.MSELoss() if cfg.LOSS.VEC else None
# collision loss
col_criterion = CollisionLoss(cfg.LOSS.COL_THRESHOLD) if cfg.LOSS.COL else None
# joint limit loss
lim_criterion = JointLimitLoss() if cfg.LOSS.LIM else None
# end effector orientation loss
ori_criterion = nn.MSELoss() if cfg.LOSS.ORI else None
# regularization loss
reg_criterion = RegLoss() if cfg.LOSS.REG else None
# Create optimizer
optimizer = optim.Adam(z_all, lr=cfg.HYPER.LEARNING_RATE)
best_loss = float('Inf')
best_z_all = copy.deepcopy(z_all)
best_cnt = 0
start_time = time.time()
# latent optimization
for epoch in range(cfg.HYPER.EPOCHS):
train_loss,ang = train_epoch(self.model, ee_criterion, vec_criterion, col_criterion, lim_criterion,
ori_criterion, reg_criterion, optimizer, data_loader, target_list, epoch,
logger, cfg.OTHERS.LOG_INTERVAL, writer, self.device, z_all)
# Save model
if train_loss > best_loss:
best_cnt += 1
else:
best_cnt = 0
best_loss = train_loss
best_z_all = copy.deepcopy(z_all)
if best_cnt == 5:
# logger.info("Interation Finished")
print("Interation Finished")
break
print(best_cnt)
# store final results
self.model.eval()
pos_all = []
ang_all = []
for batch_idx, data_list in enumerate(data_loader):
for target_idx, target in enumerate(target_list):
# fetch target
target_list = [target for data in data_list]
# fetch z
z = best_z_all[batch_idx]
# forward
target_ang, target_pos, _, _, _, _, target_global_pos = self.model.decode(z, Batch.from_data_list(
target_list).to(z.device))
pos_all.append(target_global_pos)
ang_all.append(target_ang)
# reshape
# ang = ang.view(sum([data.t if hasattr(data, 't') else 1 for data in target_list]), -1).cpu().numpy() # [T, joint_num]
# pos = pos.view(sum([data.t if hasattr(data, 't') else 1 for data in target_list]), -1, 3) # [T, joint_num, xyz]
pos = torch.cat(pos_all, dim=0).view(len(data_loader), -1, 3).detach().cpu().numpy() # [T, joint_num, xyz]
ang = torch.cat(ang_all, dim=0).view(len(target_list), -1).detach().cpu().numpy()
#output
l_joint_angle_2=ang[:, :7]
r_joint_angle_2=ang[:, 7:]
l_glove_angle_2=l_hand_angle
r_glove_angle_2=r_hand_angle
return l_joint_angle_2,r_joint_angle_2,l_glove_angle_2,r_glove_angle_2