Advanced
Flowise is an open source low-code tool for developers to build customized LLM orchestration flow & AI agents. You can find more details.
docker network create --driver bridge retrieval-augmented-generation
Prepare the embeddings and model YAML file at the current working directory. These file can be found in the deployment/LocalAI
which is bge-m3.yaml
and LLaMa3-8b-WangchanX-sft-Demo.yaml
. Then run the following command for create service
docker build -t localai -f deployment/LocalAi/Dockerfile.LocalAi .
docker run -d -it --network retrieval-augmented-generation --gpus '"device=0"' -p 8080:8080 --name localai-service localai
Run the following command for create service
docker run -d --network retrieval-augmented-generation --name chroma-db -p 8000:8000 chromadb/chroma
Run upload.py
that can find in Chroma/upload.py
for upload embeddings documents to retriever db
python upload.py
Run the following command for create chatflow database service
docker run -d --name langfuse-db --network retrieval-augmented-generation -p 5432:5432 -e POSTGRES_USER=langfuse -e POSTGRES_PASSWORD=WangchanX -e POSTGRES_DB=postgres postgres:14
Run the following command for create chatflow service
docker run -it --network retrieval-augmented-generation -e DATABASE_HOST=langfuse-db -e DATABASE_USERNAME=langfuse -e DATABASE_PASSWORD=WangchanX -e DATABASE_NAME=postgres -e NEXTAUTH_URL=http://localhost:3000 -e NEXTAUTH_SECRET=mysecret -e SALT=mysalt -p 3000:3000 -d --name langfuse-service langfuse/langfuse
docker run -d -it --network retrieval-augmented-generation --name flowise-service -e PORT=4000 -e FLOWISE_USERNAME=admin -e FLOWISE_PASSWORD=admin -p 4000:4000 elestio/flowiseai
- Preview: