-
Notifications
You must be signed in to change notification settings - Fork 232
/
Copy pathtrain.py
83 lines (75 loc) · 3.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
@author: Viet Nguyen <[email protected]>
"""
import os
os.environ['OMP_NUM_THREADS'] = '1'
import argparse
import torch
from src.env import create_train_env
from src.model import ActorCritic
from src.optimizer import GlobalAdam
from src.process import local_train, local_test
import torch.multiprocessing as _mp
import shutil
def get_args():
parser = argparse.ArgumentParser(
"""Implementation of model described in the paper: Asynchronous Methods for Deep Reinforcement Learning for Super Mario Bros""")
parser.add_argument("--world", type=int, default=1)
parser.add_argument("--stage", type=int, default=1)
parser.add_argument("--action_type", type=str, default="complex")
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--gamma', type=float, default=0.9, help='discount factor for rewards')
parser.add_argument('--tau', type=float, default=1.0, help='parameter for GAE')
parser.add_argument('--beta', type=float, default=0.01, help='entropy coefficient')
parser.add_argument("--num_local_steps", type=int, default=50)
parser.add_argument("--num_global_steps", type=int, default=5e6)
parser.add_argument("--num_processes", type=int, default=6)
parser.add_argument("--save_interval", type=int, default=500, help="Number of steps between savings")
parser.add_argument("--max_actions", type=int, default=200, help="Maximum repetition steps in test phase")
parser.add_argument("--log_path", type=str, default="tensorboard/a3c_super_mario_bros")
parser.add_argument("--saved_path", type=str, default="trained_models")
parser.add_argument("--load_from_previous_stage", type=bool, default=False,
help="Load weight from previous trained stage")
parser.add_argument("--use_gpu", type=bool, default=True)
args = parser.parse_args()
return args
def train(opt):
torch.manual_seed(123)
if os.path.isdir(opt.log_path):
shutil.rmtree(opt.log_path)
os.makedirs(opt.log_path)
if not os.path.isdir(opt.saved_path):
os.makedirs(opt.saved_path)
mp = _mp.get_context("spawn")
env, num_states, num_actions = create_train_env(opt.world, opt.stage, opt.action_type)
global_model = ActorCritic(num_states, num_actions)
if opt.use_gpu:
global_model.cuda()
global_model.share_memory()
if opt.load_from_previous_stage:
if opt.stage == 1:
previous_world = opt.world - 1
previous_stage = 4
else:
previous_world = opt.world
previous_stage = opt.stage - 1
file_ = "{}/a3c_super_mario_bros_{}_{}".format(opt.saved_path, previous_world, previous_stage)
if os.path.isfile(file_):
global_model.load_state_dict(torch.load(file_))
optimizer = GlobalAdam(global_model.parameters(), lr=opt.lr)
processes = []
for index in range(opt.num_processes):
if index == 0:
process = mp.Process(target=local_train, args=(index, opt, global_model, optimizer, True))
else:
process = mp.Process(target=local_train, args=(index, opt, global_model, optimizer))
process.start()
processes.append(process)
process = mp.Process(target=local_test, args=(opt.num_processes, opt, global_model))
process.start()
processes.append(process)
for process in processes:
process.join()
if __name__ == "__main__":
opt = get_args()
train(opt)