Skip to content

Latest commit

 

History

History
131 lines (110 loc) · 7.61 KB

File metadata and controls

131 lines (110 loc) · 7.61 KB

WAMR XIP (Execution In Place) feature introduction

Some IoT devices may require to run the AOT file from flash or ROM which is read-only, so as to reduce the memory consumption, or resolve the issue that there is no executable memory available to run AOT code. In such case, the AOT code inside the AOT file shouldn't be duplicated into memory and shouldn't be modified (or patched) by the AOT relocations. To address this, WAMR implements the XIP (Execution In Place) feature, which generates the AOT relocations as few as possible:

  • In the AOT code, an AOT function calls other functions with indirect mode: it doesn't call other functions directly, but looks up their pointers from the function pointer table passed by its first argument exec_env, and then calls the function pointer found. By this way the relocations to other functions are eliminated.
  • Eliminate the calls to the LLVM intrinsic functions, or, replace calling them with calling runtime self implemented functions instead, e.g. the calling to llvm.experimental.constrained.fadd.f32 is replaced by the calling to aot_intrinsic_fadd_f32.

The XIP file is an AOT file without (or with few) relocations to patch the AOT code (or text section). Developer can use the option --enable-indirect-mode --disable-llvm-intrinsics for wamrc to generate the AOT file, e.g.:

wamrc --enable-indirect-mode --disable-llvm-intrinsics -o <aot_file> <wasm_file>
or
wamrc --xip -o <aot_file> <wasm_file>

Note: --xip is a short option for --enable-indirect-mode --disable-llvm-intrinsics

Known issues

There may be some relocations to the ".rodata" like sections which require to patch the AOT code. More work will be done to resolve it in the future.

Tuning the XIP intrinsic functions

WAMR provides a default mapping table for some targets, but it may not be the best one for your target. And it doesn't cover all the supported targets.

So, wamrc provides the option --enable-builtin-intrinsics=<intr1,intr2,...> to make it possible to tune the intrinsic functions for your target.

Firstly, you should understand why we don't use the LLVM intrinsic functions directly. The reason is that the LLVM intrinsic functions can't map to the native instructions directly, e.g. the LLVM intrinsic function i32.div_s can't map to the native instruction if the target doesn't support the division instruction, it will be translated to a function call to the runtime function from libgcc/compiler-rt. This will cause the AOT code to have the relocations to the libgcc/compiler-rt, which is not acceptable for the XIP feature.

So, we need to replace the LLVM intrinsic functions with the runtime self implemented functions, which can be called through the function pointer table (--enable-indirect-mode) and don't have the relocations to the libgcc/compiler-rt (--disable-llvm-intrinsics).

Available intrinsic functions for tuning:

LLVM intrinsic function Explanation
llvm.experimental.constrained.fadd.f32 float32 add
llvm.experimental.constrained.fadd.f64 float64 add
llvm.experimental.constrained.fsub.f32 float32 sub
llvm.experimental.constrained.fsub.f64 float64 sub
llvm.experimental.constrained.fmul.f32 float32 mul
llvm.experimental.constrained.fmul.f64 float64 mul
llvm.experimental.constrained.fdiv.f32 float32 div
llvm.experimental.constrained.fdiv.f64 float64 div
llvm.fabs.f32 float32 abs
llvm.fabs.f64 float64 abs
llvm.ceil.f32 float32 ceil
llvm.ceil.f64 float64 ceil
llvm.floor.f32 float32 floor
llvm.floor.f64 float64 floor
llvm.trunc.f32 float32 trunc
llvm.trunc.f64 float64 trunc
llvm.rint.f32 float32 rint
llvm.rint.f64 float64 rint
llvm.sqrt.f32 float32 sqrt
llvm.sqrt.f64 float64 sqrt
llvm.copysign.f32 float32 copysign
llvm.copysign.f64 float64 copysign
llvm.minnum.f32 float32 minnum
llvm.minnum.f64 float64 minnum
llvm.maxnum.f32 float32 maxnum
llvm.maxnum.f64 float64 maxnum
llvm.ctlz.i32 int32 count leading zeros
llvm.ctlz.i64 int64 count leading zeros
llvm.cttz.i32 int32 count trailing zeros
llvm.cttz.i64 int64 count trailing zeros
llvm.ctpop.i32 int32 count population
llvm.ctpop.i64 int64 count population
f64_convert_i32_s int32 to float64
f64_convert_i32_u uint32 to float64
f32_convert_i32_s int32 to float32
f32_convert_i32_u uint32 to float32
f64_convert_i64_s int64 to float64
f64_convert_i64_u uint64 to float64
f32_convert_i64_s int64 to float32
f32_convert_i64_u uint64 to float32
i32_trunc_f32_s float32 to int32
i32_trunc_f32_u float32 to uint32
i32_trunc_f64_s float64 to int32
i32_trunc_f64_u float64 to uint32
i64_trunc_f64_s float64 to int64
i64_trunc_f64_u float64 to uint64
i64_trunc_f32_s float32 to int64
i64_trunc_f32_u float32 to uint64
f32_demote_f64 float64 to float32
f64_promote_f32 float32 to float64
f32_cmp float32 compare
f64_cmp float64 compare
i64.div_s int64 div
i64.div_u uint64 div
i32.div_s int32 div
i32.div_u uint32 div
i64.rem_s int64 rem
i64.rem_u uint64 rem
i32.rem_s int32 rem
i32.rem_u uint32 rem
i64.or int64 or
i64.and int64 and
i32.const emit i32 const into constant table
i64.const emit i64 const into constant table
f32.const emit f32 const into constant table
f64.const emit f64 const into constant table

And also provide combined intrinsic functions to simplify the tuning:

  • all: all the above intrinsic functions
  • i32.common: i32.div_s, i32.div_u, i32.rem_s, i32.rem_u
  • i64.common: i64.div_s, i64.div_u, i64.rem_s, i64.rem_u, i64.or, i64.and
  • f32.common: f32_cmp, llvm.experimental.constrained.fadd.f32, llvm.experimental.constrained.fsub.f32, llvm.experimental.constrained.fmul.f32, llvm.experimental.constrained.fdiv.f32, llvm.fabs.f32, llvm.ceil.f32, llvm.floor.f32, llvm.trunc.f32, llvm.rint.f32, llvm.sqrt.f32, llvm.copysign.f32, llvm.minnum.f32, llvm.maxnum.f32
  • f64.common: f32_demote_f64, f64_promote_f32, f64_cmp, llvm.experimental.constrained.fadd.f64, llvm.experimental.constrained.fsub.f64, llvm.experimental.constrained.fmul.f64, llvm.experimental.constrained.fdiv.f64, llvm.fabs.f64, llvm.ceil.f64, llvm.floor.f64, llvm.trunc.f64, llvm.rint.f64, llvm.sqrt.f64, llvm.copysign.f64, llvm.minnum.f64, llvm.maxnum.f64
  • f32xi32: i32_trunc_f32_s, i32_trunc_f32_u, f32_convert_i32_s, f32_convert_i32_u
  • f64xi32: i32_trunc_f64_s, i32_trunc_f64_u, f64_convert_i32_s, f64_convert_i32_u
  • f32xi64: i64_trunc_f32_s, i64_trunc_f32_u, f32_convert_i64_s, f32_convert_i64_u
  • f64xi64: i64_trunc_f64_s, i64_trunc_f64_u, f64_convert_i64_s, f64_convert_i64_u
  • constop: i32.const, i64.const, f32.const, f64.const
  • fpxint: f32xi32, f64xi32, f32xi64, f64xi64
  • fp.common: f32.common, f64.common

Example

For ARM Cortex-M55, since it has double precision floating point unit, so it can support f32/f64 operations. But as a 32-bit MCU, it can only support 32-bit integer operations. So we can use the following command to generate the XIP binary:

wamrc --target=thumbv8m.main --cpu=cortex-m55 --xip --enable-builtin-intrinsics=i64.common -o hello.aot hello.wasm

For ARM Cortex-M3, since it has no floating point unit, and it can only support 32-bit integer operations. So we can use the following command to generate the XIP binary:

wamrc --target=thumbv7m --cpu=cortex-m3 --xip --enable-builtin-intrinsics=i64.common,fp.common,fpxint -o hello.aot hello.wasm

Other platforms can be tuned in the same way, which intrinsic should be enabled depends on the target platform's hardware capability.