-
Notifications
You must be signed in to change notification settings - Fork 22
/
vtb7_4old.m
executable file
·153 lines (142 loc) · 3.54 KB
/
vtb7_4old.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
function [z,nf,a,com]=VTB7_4(f,TF,b)
%[z,nf,a,com]=VTB7_4(f,TF) Curve fit to SDOF FRF.
% f is the frequency vector in Hz. It does not have to
% start at 0 Hz.
% TF is the complex transfer function.
% z and nf are the damping ratio and natural frequency (Hz)
% a is the product of the residues of the coordinates the
% transfer function is between. (For example, in the example
% below, a1 times a2 is returned. See equation 7.42)
% If com is returned as a real number, then it is the
% compliance between the two coordinates.
% Only one peak may exist in the segment of the FRF passed to
% VTB7_4. No zeros may exist within this segment. Otherwise,
% curve fitting becomes unreliable.
%
% EXAMPLE:
% M=eye(2);
% K=[2 -1;-1 2];
% C=.01*K;
% [Freq,Recep,Mobil,Inert]=vtb7_5(M,C,K,1,2,linspace(0,.5,1024));
% figure(1)
% n=250;
% f2=Freq((1:n)+450);
% R2=Recep((1:n)+450);
% R2=R2+.1*randn(n,1)+.1*randn(n,1)*i;% Poorly Simulated Noise
% [z,nf,a,com]=vtb7_4(f2,R2)
%
% Note that by changing the parts of Freq and Recep used
% We can curve fit to other modes.
% Copyright Joseph C. Slater, 10/8/99
% Updated 11/8/99 to improve robustness
global XoF
if nargin==2
[y,in]=max(abs(TF));
lf=length(f);
f(in);
a0=abs(TF(1))*(2*pi*f(in))^2;
z=.0005;
a0=-sign(imag(TF(in)))*abs(TF(in))*2*z*(2*pi*f(in))^2;TF(in);
x=[a0;z;2*pi*f(in);0;0;0];%sign(real(TF(1)))*
%x2=x;%
%cost=vtb7_4(x,f,TF)
if in-3<1|in+2>length(f)
disp('The peak response must be near the middle of the data')
disp('Please center your peak and try again')
break
end
x
x=fmins('vtb7_4',x,[],[],f(in-3:in+2),TF(in-3:in+2));
x
cferr(x,f,TF); %x
%cost=vtb7_4(x,f,TF)
x=fmins('vtb7_4',x,[],[],f,TF);
x
%cost=vtb7_4(x,f,TF)
x=fmins('vtb7_4',x,[],[],f,TF);
x
%cost=vtb7_4(x,f,TF)
x=fmins('vtb7_4',x,[],[],f,TF);
x
%cost=vtb7_4(x,f,TF)
x=fmins('vtb7_4',x,[],[],f,TF);
x
%cost=vtb7_4(x,f,TF)
%x=x2
z=x(2);om=x(3);
%z,om
if f(1)==0
k=x(4)+x(1)/om^2;
else
k=sqrt(-1);
end
com=k;
nf=om/2/pi;%*2*pi;
a=x(1);
%plot(f,20*log10(abs(XoF)),'g',f,20*log10(abs(TF)))
%grid on
%zoom on
if 1==1
Fmin=min(f);
Fmax=max(f);
phase=unwrap(angle(TF))*180/pi;
phase2=unwrap(angle(XoF))*180/pi;size(phase);
%size(XoF)
subplot(2,1,1)
plot(f,20*log10(abs(XoF)),f,20*log10(abs(TF)))
as=axis;
zoom on
legend('Identified FRF','Experimental FRF',0)
axis([Fmin Fmax as(3) as(4)])
xlabel('Frequency (Hz)')
ylabel('Mag (dB)')
grid on
% Fmin,Fmax,min(mag),max(mag)
% axis([Fmin Fmax minmag maxmag])
while phase2(in)>50
phase2=phase2-360;
end
phased=phase2(in)-phase(in);
phase=phase+round(phased/360)*360;
phmin_max=[floor(min(min([phase;phase2]))/45)*45 ceil(max(max([phase;phase2]))/45)*45];
subplot(2,1,2)
plot(f,phase2,f,phase)
xlabel('Frequency (Hz)')
ylabel('Phase (deg)')
legend('Identified FRF','Experimental FRF',0)
grid on
axis([Fmin Fmax phmin_max(1) phmin_max(2)])
gridmin_max=round(phmin_max/90)*90;
set(gca,'YTick',gridmin_max(1):22.5:gridmin_max(2))
zoom on
end
else
% global XoF
%f,TF,b
x=f;
f=TF;
TF=b;
w2=f*2*pi;
lx=length(x);
x(3)=abs(x(3));
x(2)=abs(x(2));
XoF=x(lx-2)+x(lx-1)*i*w2-x(lx)*w2.^2;
% for j=1:(lx/3)-1
XoF=XoF+x(1)./(-w2.^2+2*x(2)*w2*i*x(3)+x(3)^2);
% end
vtb74=norm(XoF-TF);
z=vtb74;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cferr=cferr(x,f,TF)
global XoF
w2=f*2*pi;
lx=length(x);
XoF=x(lx-2)+x(lx-1)*i*w2-x(lx)*w2.^2;
for j=1:(lx/3)-1
XoF=XoF+x(3*j-2)./(-w2.^2+2*x(3*j-1)*w2*i*x(3*j)+x(3*j)^2);
end
cferr=norm(XoF-TF);
%pause
%Automatically check for updates
vtbchk