-
Notifications
You must be signed in to change notification settings - Fork 2
/
loss.py
254 lines (220 loc) · 9.27 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import math
import torch.nn.functional as F
import pdb
def Entropy(input_):
bs = input_.size(0)
epsilon = 1e-5
entropy = -input_ * torch.log(input_ + epsilon)
entropy = torch.sum(entropy, dim=1)
return entropy
def soft_CE(softout, soft_label):
bs = softout.size(0)
epsilon = 1e-5
loss = -soft_label * torch.log(softout + epsilon)
total_loss = torch.sum(loss, dim=1)
return total_loss
def grl_hook(coeff):
def fun1(grad):
return -coeff*grad.clone()
return fun1
def CDAN(input_list, ad_net, entropy=None, coeff=None, random_layer=None):
softmax_output = input_list[1].detach()
feature = input_list[0]
if random_layer is None:
op_out = torch.bmm(softmax_output.unsqueeze(2), feature.unsqueeze(1))
ad_out = ad_net(op_out.view(-1, softmax_output.size(1) * feature.size(1)))
else:
random_out = random_layer.forward([feature, softmax_output])
ad_out = ad_net(random_out.view(-1, random_out.size(1)))
batch_size = softmax_output.size(0) // 2
dc_target = torch.from_numpy(np.array([[1]] * batch_size + [[0]] * batch_size)).float().cuda()
if entropy is not None:
entropy.register_hook(grl_hook(coeff))
entropy = 1.0+torch.exp(-entropy)
source_mask = torch.ones_like(entropy)
source_mask[feature.size(0)//2:] = 0
source_weight = entropy*source_mask
target_mask = torch.ones_like(entropy)
target_mask[0:feature.size(0)//2] = 0
target_weight = entropy*target_mask
weight = source_weight / torch.sum(source_weight).detach().item() + \
target_weight / torch.sum(target_weight).detach().item()
return torch.sum(weight.view(-1, 1) * nn.BCELoss(reduction='none')(ad_out, dc_target)) / torch.sum(weight).detach().item()
else:
return nn.BCELoss()(ad_out, dc_target)
def DANN(features, ad_net):
ad_out = ad_net(features)
batch_size = ad_out.size(0) // 2
dc_target = torch.from_numpy(np.array([[1]] * batch_size + [[0]] * batch_size)).float().cuda()
return nn.BCELoss()(ad_out, dc_target)
class CrossEntropyLabelSmooth(nn.Module):
"""Cross entropy loss with label smoothing regularizer.
Reference:
Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
Equation: y = (1 - epsilon) * y + epsilon / K.
Args:
num_classes (int): number of classes.
epsilon (float): weight.
"""
def __init__(self, num_classes, epsilon=0.1, use_gpu=True, reduction=True):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.use_gpu = use_gpu
self.reduction = reduction
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
"""
Args:
inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
targets: ground truth labels with shape (num_classes)
"""
log_probs = self.logsoftmax(inputs)
targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).cpu(), 1)
if self.use_gpu: targets = targets.cuda()
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (- targets * log_probs).sum(dim=1)
if self.reduction:
return loss.mean()
else:
return loss
return loss
class SupConLoss(nn.Module):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR"""
def __init__(self, temperature=0.07, contrast_mode='all',
base_temperature=0.07):
super(SupConLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
features=features.unsqueeze(dim=1)
# raise ValueError('`features` needs to be [bsz, n_views, ...],'
# 'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.view(anchor_count, batch_size).mean()
return loss
class SCELoss(torch.nn.Module):
def __init__(self, alpha, beta, num_classes=10):
super(SCELoss, self).__init__()
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.alpha = alpha
self.beta = beta
self.num_classes = num_classes
self.cross_entropy = torch.nn.CrossEntropyLoss()
def forward(self, pred, labels):
# CCE
ce = self.cross_entropy(pred, labels)
# RCE
pred = F.softmax(pred, dim=1)
pred = torch.clamp(pred, min=1e-7, max=1.0)
label_one_hot = torch.nn.functional.one_hot(labels, self.num_classes).float().to(self.device)
label_one_hot = torch.clamp(label_one_hot, min=1e-4, max=1.0)
rce = (-1*torch.sum(pred * torch.log(label_one_hot), dim=1))
# Loss
loss = self.alpha * ce + self.beta * rce.mean()
return loss
class KnowledgeDistillationLoss(nn.Module):
def __init__(self, reduction='mean', alpha=-1.0):
super().__init__()
self.reduction = reduction
self.alpha = alpha
def forward(self, inputs, targets, mask=None):
inputs = inputs.narrow(1, 0, targets.shape[1])
outputs = torch.log_softmax(inputs, dim=1)
labels = torch.softmax(targets * self.alpha, dim=1)
#labels = targets*self.alpha
loss = (outputs * labels).mean(dim=1)
if mask is not None:
loss = loss * mask.float()
if self.reduction == 'mean':
outputs = -torch.mean(loss)
elif self.reduction == 'sum':
outputs = -torch.sum(loss)
else:
outputs = -loss
return outputs
class HLoss(nn.Module):
def __init__(self):
super(HLoss, self).__init__()
def forward(self, x):
b = F.softmax(x, dim=1) * F.log_softmax(x, dim=1)
b = -1.0 * b.sum()
return b
def SoftCrossEntropyLoss(logit, soft_pseudo_label): # Checked and is correct
p = F.log_softmax(logit, dim=1)
# print('sofmax logit', p.shape)
# print('pseudo labels (GT)', soft_pseudo_label.shape)
# w_labels = self.weights*y
# labels = y
# print(soft_pseudo_label*p)
loss = -(soft_pseudo_label*p).sum(dim=1)
# print('Sum of loss', loss.shape)
return loss