-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
48 lines (40 loc) · 1.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from evaluation.mention_matching import matchMentions
from sklearn.ensemble import RandomForestClassifier
from argparse import ArgumentParser
from transformers import pipeline
from preprocessing.document import documentsFromTextinatorFile
from preprocessing.config import Config
from preprocessing.stanza_processor import StanzaAnnotator, addStanzaLinksToGoldMentions
from algorithm.add_features import addFeatures
from hcoref.hcoref import trainAll
from algorithm.mention_detection import mentionDetection
def logGreen(message: str):
print('\033[92m' + message + '\033[0m')
def main():
logGreen('Starting training procedure')
parser = ArgumentParser()
parser.add_argument('configFile', help='Path to the training config file')
args = parser.parse_args()
config = Config(args.configFile)
stanzaAnnotator = StanzaAnnotator()
nerPipeline = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner')
docs = documentsFromTextinatorFile(config.trainingInputFile)
logGreen('Preprocessing documents')
for doc in docs:
stanzaAnnotator.annotateDocument(doc)
if not config.useGoldMentions:
mentionDetection(doc)
else:
doc.predictedMentions = doc.goldMentions
addStanzaLinksToGoldMentions(doc)
matchMentions(doc, config)
for mention in doc.predictedMentions.values():
if mention.id in doc.predictedToGold:
mention.cluster = doc.goldMentions[doc.predictedToGold[mention.id]].cluster
else:
mention.cluster = -1 # Mention belongs to no gold cluster, since it corresponds to no gold mention.
addFeatures(doc, nerPipeline)
logGreen('Doing training')
trainAll(docs, config)
if __name__ == "__main__":
main()