-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathmain.py
1109 lines (936 loc) · 43.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
main.py: Main code to drive LSC-CNN
Authors : svp, mns, dbs
"""
import argparse
import random
from data_reader import DataReader
import matplotlib
from matplotlib import pyplot as plt
import cv2
import numpy as np
import os
import random, string
import math
import pickle
from collections import OrderedDict
import torch
from torch import nn as nn, optim as optim
from torch.autograd import Variable
import datetime
from error_function import offset_sum
from scipy.misc import imsave, imresize
from utils import apply_nms
from network import LSCCNN
from utils.logging_tools import *
from utils.loss_weights import *
################ Architecture Hyper-parameters ################
# PRED_DOWNSCALE_FACTORS is the set of integer factors indicating how much to
# downscale the dimensions of the ground truth prediction for each scale output.
# Note that the data reader under default settings creates prediction maps at
# one-half resolution (wrt input sizes) and hence PRED_DOWNSCALE_FACTORS =
# (8, 4, 2, 1) translates to 1/16, 1/8, 1/4 and 1/2 prediction sizes (s={0,1,2,3}).
PRED_DOWNSCALE_FACTORS = (8, 4, 2, 1)
# Size increments for the box sizes (\gamma) as mentioned in the paper.
GAMMA = [1, 1, 2, 4]
# Number of predefined boxes per scales (n_{mathcal{B}}).
NUM_BOXES_PER_SCALE = 3
###############################################################
# ---- Computing predefined box sizes and global variables
BOX_SIZE_BINS = [1]
BOX_IDX = [0]
g_idx = 0
while len(BOX_SIZE_BINS) < NUM_BOXES_PER_SCALE * len(PRED_DOWNSCALE_FACTORS):
gamma_idx = len(BOX_SIZE_BINS) // (len(GAMMA)-1)
box_size = BOX_SIZE_BINS[g_idx] + GAMMA[gamma_idx]
box_idx = gamma_idx*(NUM_BOXES_PER_SCALE+1) + (len(BOX_SIZE_BINS) % (len(GAMMA)-1))
BOX_IDX.append(box_idx)
BOX_SIZE_BINS.append(box_size)
g_idx += 1
BOX_INDEX = dict(zip(BOX_SIZE_BINS, BOX_IDX))
SCALE_BINS_ON_BOX_SIZE_BINS = [NUM_BOXES_PER_SCALE * (s + 1) \
for s in range(len(GAMMA))]
BOX_SIZE_BINS_NPY = np.array(BOX_SIZE_BINS)
BOXES = np.reshape(BOX_SIZE_BINS_NPY, (4, 3))
BOXES = BOXES[::-1]
metrics = ['loss1', 'new_mae']
# Loss Weights (to be read from .npy file while training)
loss_weights = None
matplotlib.use('Agg')
parser = argparse.ArgumentParser(description='PyTorch LSC-CNN Training')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--gpu', default=1, type=int,
help='GPU number')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts),\
0-indexed - so equal to the number of epochs completed \
in the last save-file')
parser.add_argument('-b', '--batch-size', default=4, type=int, metavar='N',
help='mini-batch size (default: 4),only used for train')
parser.add_argument('--patches', default=100, type=int, metavar='N',
help='number of patches per image')
parser.add_argument('--dataset', default="parta", type=str,
help='dataset to train on')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float,
metavar='M', help='momentum')
parser.add_argument('--threshold', default=-1.0, type=float,
metavar='M', help='fixed threshold to do NMS')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W',
help='weight decay (default: 1e-4)')
parser.add_argument('--mle', action='store_true',
help='calculate mle')
parser.add_argument('--lsccnn', action='store_true',
help='use the vgg_modified network')
parser.add_argument('--trained-model', default='', type=str, metavar='PATH', help='filename of model to load', nargs='+')
dataset_paths, model_save_dir, batch_size, crop_size, dataset = None, None, None, None, None
class networkFunctions():
def __init__(self):
self.train_funcs = []
self.test_funcs = None
self.optimizers = None
'''
Get N channel ground truth for each scale. (Here N = 4 except for WIDERFACE)
B1, B2, B3, Z - Bi's are Box GT and Z is the background i.e
if there is not GT in any of the scales.
Parameters
-----------
Yss (list of torch cuda tensor)
bool_masks (list of torch cuda tensor) - Used only while training
mode (string) - To specify if the fn. is called at test/train time.
Returns
-------
Yss_out (list of torch cuda tensor)
'''
def get_box_gt(self, Yss):
Yss_out = []
for yss in Yss: # iterate over all scales!
# Make empty maps of shape gt_pred_map.shape for x, y, w, h
w_map = np.zeros((yss.shape[0], 4) + yss.shape[2:]) # (B,4,h,w)
w_map[:, 3] = 1 # Making Z initialized as 1's since they are in majority!
Yss_out.append(w_map)
assert(len(Yss_out) == 4)
# Get largest spatial gt
yss_np = Yss[0].cpu().data.numpy()
gt_ref_map = yss_np # (B, 1, h, w)
# For every gt patch from the gt_ref_map
for b in range(0, gt_ref_map.shape[0]):
y_idx, x_idx = np.where(gt_ref_map[b][0] > 0)
num_heads = y_idx.shape[0]
if num_heads > 1:
distances = (x_idx - x_idx[np.newaxis, :].T) ** 2 + (y_idx - y_idx[np.newaxis, :].T) ** 2
min_distances = np.sqrt(np.partition(distances, 1, axis=1)[:, 1])
min_distances = np.minimum(min_distances, np.inf) ##? WHY INF???
box_inds = np.digitize(min_distances, BOX_SIZE_BINS_NPY, False)
box_inds = np.maximum(box_inds - 1, 0) # to make zero based indexing
elif num_heads == 1:
box_inds = np.array([BOX_SIZE_BINS_NPY.shape[0] - 1])
else:
box_inds = np.array([])
assert(np.all(box_inds < BOX_SIZE_BINS_NPY.shape[0]))
scale_inds = np.digitize(box_inds, SCALE_BINS_ON_BOX_SIZE_BINS, False)
# Assign the w_maps
check_sum = 0
for i, (yss, w_map) in enumerate(zip(Yss, Yss_out)):
scale_sel_inds = (scale_inds == i)
check_sum += np.sum(scale_sel_inds)
if scale_sel_inds.shape[0] > 0:
# find box index in the scale
sel_box_inds = box_inds[scale_sel_inds]
scale_box_inds = sel_box_inds % 3
heads_y = y_idx[scale_sel_inds] // PRED_DOWNSCALE_FACTORS[3-i]
heads_x = x_idx[scale_sel_inds] // PRED_DOWNSCALE_FACTORS[3-i]
Yss_out[i][b, scale_box_inds, heads_y, heads_x] = BOX_SIZE_BINS_NPY[sel_box_inds]
Yss_out[i][b, 3, heads_y, heads_x] = 0
assert(check_sum == torch.sum(Yss[0][b]).item() == len(y_idx))
Yss_out = [torch.cuda.FloatTensor(w_map) for w_map in Yss_out]
check_sum = 0
for yss_out in Yss_out:
yss_out_argmax, _ = torch.max(yss_out[:, 0:3], dim=1)
yss_out_argmax = (yss_out_argmax>0).type(torch.cuda.FloatTensor)
check_sum += torch.sum(yss_out_argmax).item()
yss = (Yss[0]>0).type(torch.cuda.FloatTensor)
assert(torch.sum(yss) == check_sum)
return Yss_out
'''
This function upsamples given tensor by a factor but make sures there is no repetition
of values. Basically when upsampling by a factor of 2, there are 3 new places created. This fn.
instead of repeating the values, marks them 1.
Caveat : this function currently supports upsample by factor=2 only. For power of 2, use it
multiple times. This doesn't support factors other than powers of 2
Input - input (torch tensor) - A binary map denoting where the head is present. (Bx4xHxW)
factor (int) - factor by which you need to upsample
Output - output (torch tensor) - Upsampled and non-repeated output (Bx4xH'xW')
H' - upsampled height
W' - upsampled width
'''
def upsample_single(self, input_, factor=2):
channels = input_.size(1)
indices = torch.nonzero(input_)
indices_up = indices.clone()
# Corner case!
if indices_up.size(0) == 0:
return torch.zeros(input_.size(0),input_.size(1), input_.size(2)*factor, input_.size(3)*factor).cuda()
indices_up[:, 2] *= factor
indices_up[:, 3] *= factor
output = torch.zeros(input_.size(0),input_.size(1), input_.size(2)*factor, input_.size(3)*factor).cuda()
output[indices_up[:, 0], indices_up[:, 1], indices_up[:, 2], indices_up[:, 3]] = input_[indices[:, 0], indices[:, 1], indices[:, 2], indices[:, 3]]
output[indices_up[:, 0], channels-1, indices_up[:, 2]+1, indices_up[:, 3]] = 1.0
output[indices_up[:, 0], channels-1, indices_up[:, 2], indices_up[:, 3]+1] = 1.0
output[indices_up[:, 0], channels-1, indices_up[:, 2]+1, indices_up[:, 3]+1] = 1.0
output_check = nn.functional.max_pool2d(output, kernel_size=2)
return output
'''
This function implements the GWTA loss in which it
divides the pred and gt into grids and calculates
loss on each grid and returns the maximum of the losses.
input : pred (torch.cuda.FloatTensor) - Bx4xHxW - prediction from the network
gt (torch.cuda.FloatTensor) - BxHxW - Ground truth points
criterion - criterion to take the loss between pred and gt
grid_factor (int) - the image would be divided in 2^grid_factor number of patches for takeing WTA loss
output : max_loss (torch.FloatTensor) - Maximum of the grid losses
'''
def gwta_loss(self, pred, gt, criterion, grid_factor=2):
patch_size_h = int((pred.size(2) / grid_factor).item())
patch_size_w = int((pred.size(3) / grid_factor).item())
pred_re = pred.unfold(2, patch_size_h, patch_size_h).unfold(3, patch_size_w, patch_size_w).contiguous()
gt_re = gt.unfold(1, patch_size_h, patch_size_h).unfold(2, patch_size_w, patch_size_w).contiguous()
pred_re_merged = pred_re.view(pred_re.size(0), pred_re.size(1), -1, pred_re.size(-2), pred_re.size(-1))
gt_re_merged = gt_re.view(gt_re.size(0), -1, gt_re.size(-2), gt_re.size(-1))
grids_in_each_column = int(pred.shape[2] / patch_size_h)
grids_in_each_row = int(pred.shape[3] / patch_size_w)
num_grids = grids_in_each_column * grids_in_each_row
assert(num_grids == pred_re_merged.size(2))
assert(num_grids == gt_re_merged.size(1))
max_loss = -float("inf")
for ng in range(num_grids):
out = pred_re_merged[:, :, ng]
yss = gt_re_merged[:, ng]
curr_loss = criterion(out, yss)
if curr_loss > max_loss:
max_loss = curr_loss
return max_loss
'''
Create network functions i.e train and test functions
for LSC-CNN.
Parameters
-----------
network: (torch model)torch model to train.
Here len(network == 1)
Returns
---------
train_funcs: list of train function for each of the network in
network
test_funcs: list of test function for each of the network in
network
'''
def create_network_functions(self, network):
self.optimizers = optim.SGD(filter(lambda p: p.requires_grad, network.parameters()),
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
'''
Train function for LSC-CNN, with GWTA Loss
and scale-wise weighting.
Parameters
-----------
Xs - (ndarray) Batched images
Ys - (ndarray) Batched Ground truth of largest scale
Returns
---------
losses: (list of float) list of loss values of each scale.
hist_boxes: (list) histogram of boxes of predictions
hist_boxes_gt: (list) histogram of boxes of gt.
'''
def train_function(Xs, Ys, hist_boxes, hist_boxes_gt, loss_weights, network):
Ys = (Ys>0).astype(np.float32)
network = network.cuda()
self.optimizers.zero_grad()
if torch.cuda.is_available():
X = torch.autograd.Variable(torch.from_numpy(Xs)).cuda()
Y = torch.autograd.Variable(torch.FloatTensor(Ys)).cuda()
Yss = [Y]
else:
assert(0)
for s in range(0, 3):
Yss.append(torch.nn.functional.avg_pool2d(Yss[s], (2, 2)) * 4)
output_vars = [network(X, None)]
outputs_1 = [out for out in output_vars[0]]
Yss_out = self.get_box_gt(Yss) # Making 4 channel ground truth
Yss = Yss[::-1] # Reverse GT for uniformity of having lowest scale in the beginning
Yss_out = Yss_out[::-1] # Reverse pred for uniformity of having lowest scale in the beginning
# Put outputs in list
outputs = [out for out in output_vars[0]]
losses = []
sums = []
Yss_argmax = [torch.argmax(yss, dim=1) for yss in Yss_out]
alpha1 = torch.cuda.FloatTensor(loss_weights[3]) # 1/16 scale
alpha2 = torch.cuda.FloatTensor(loss_weights[2]) # 1/8 scale
alpha3 = torch.cuda.FloatTensor(loss_weights[1]) # 1/4 scale
alpha4 = torch.cuda.FloatTensor(loss_weights[0]) # 1/2 scale
m_1 = nn.CrossEntropyLoss(size_average=True, weight=alpha1)
m_2 = nn.CrossEntropyLoss(size_average=True, weight=alpha2)
m_3 = nn.CrossEntropyLoss(size_average=True, weight=alpha3)
m_4 = nn.CrossEntropyLoss(size_average=True, weight=alpha4)
loss = 0.0
'''
GWTA Loss
'''
for idx, (m, out, yss) in enumerate(zip([m_1, m_2, m_3, m_4], outputs, Yss_argmax)):
if idx != 0:
loss_ = self.gwta_loss(out, yss, m, grid_factor=np.power(2, idx))
else:
loss_ = m(out, yss)
loss += loss_
losses.append(loss_.item())
loss.backward()
self.optimizers.step()
# -- Histogram of boxes for weighting --
for out_idx, (out, yss) in enumerate(zip(outputs[::-1], Yss_out[::-1])):
out_argmax = torch.argmax(out, dim=1)
bin_ = np.bincount(out_argmax.cpu().data.numpy().flatten())
ii = np.nonzero(bin_)[0]
hist_boxes[ii+4*out_idx] += bin_[ii]
Yss_argmax = torch.argmax(yss, dim=1)
bin_gt = np.bincount(Yss_argmax.cpu().data.numpy().flatten())
ii_gt = np.nonzero(bin_gt)[0]
hist_boxes_gt[ii_gt+4*out_idx] += bin_gt[ii_gt]
return losses, hist_boxes, hist_boxes_gt
'''
Test function for LSC-CNN.
Parameters
-----------
X - (np.ndarray) Image patches (Bx3XHxW)
Y - (np.ndarray) Ground truth in highest scale (BX1XHXW)
Returns
---------
losses: (list of float) list of loss values of each scale.
upsample_pred: (list) list of torch tensor predictions for each scale ([Bx4xHxW] * number of scales)
upscaled to the prediction scale
upsample_gt: (list) list of torch tensor gt for each scale ([Bx4xHxW] * number of scales)
upscaled to the prediction scale
NOTE: Here 4 denotes the number of channels in prediction. In LSC-CNN 4 represents
[b_1, b_2, b_3, z] where b_i are boxes and z is the background.
'''
def test_function(X, Y, loss_weights, network):
Y = (Y>0).astype(np.float32)
if torch.cuda.is_available():
X = torch.autograd.Variable(torch.from_numpy(X)).cuda()
X_clone = X.clone()
Y = torch.autograd.Variable(torch.from_numpy(Y)).cuda()
Yss = [Y]
else:
assert(0)
network = network.cuda()
output = network(X, None)
for s in range(0, 3):
Yss.append(torch.nn.functional.avg_pool2d(Yss[s], (2, 2)) * 4)
assert(torch.sum(Yss[0]) == torch.sum(Yss[1]))
# Making 4 channel ground truth
Yss_out = self.get_box_gt(Yss)
Yss = Yss[::-1]
Yss_out = Yss_out[::-1]
Yss_argmax = [torch.argmax(yss, dim=1) for yss in Yss_out]
alpha1 = torch.cuda.FloatTensor(loss_weights[3]) # 1/16 scale
alpha2 = torch.cuda.FloatTensor(loss_weights[2]) # 1/8 scale
alpha3 = torch.cuda.FloatTensor(loss_weights[1]) # 1/4 scale
alpha4 = torch.cuda.FloatTensor(loss_weights[0]) # 1/2 scale
m_1 = nn.CrossEntropyLoss(size_average=True, weight=alpha1)
m_2 = nn.CrossEntropyLoss(size_average=True, weight=alpha2)
m_3 = nn.CrossEntropyLoss(size_average=True, weight=alpha3)
m_4 = nn.CrossEntropyLoss(size_average=True, weight=alpha4)
loss = 0.0
for (out, yss, m) in zip(output, Yss_argmax, [m_1, m_2, m_3, m_4]):
loss += m(out, yss)
out_softmax = [nn.functional.softmax(o, dim=1) for o in output]
out_argmax = [torch.argmax(o, dim=1) for o in out_softmax]
upsample_max = int(np.log2(16 // output_downscale))
upsample_gt = []
upsample_pred = []
for idx, (yss_out, out) in enumerate(zip(Yss_out, output)):
out = nn.functional.softmax(out, dim=1)
upsample_yss_out = yss_out
upsample_out = out
for n in range(upsample_max-idx):
upsample_yss_out = self.upsample_single(upsample_yss_out, factor=2)
upsample_out = self.upsample_single(upsample_out, factor=2)
upsample_gt.append(upsample_yss_out.cpu().data.numpy())
upsample_pred.append(upsample_out.cpu().data.numpy())
return loss.data, upsample_pred, upsample_gt
self.train_funcs.append(train_function)
self.test_funcs = test_function
return self.train_funcs, self.test_funcs
'''
This loads the model for training from ImageNet weights
initialization for VGG backbone.
Parameters
-----------
net: (torch model) network
dont_load: (list) list of layers, for which weights
should not be loaded.
Returns
---------
Returns nothing. The weights are replaced inplace.
'''
def load_model_VGG16(net, dont_load=[]):
if 'scale_4' in net.name:
cfg = OrderedDict()
cfg['conv1_1'] = 0
cfg['conv1_2'] = 2
cfg['conv2_1'] = 5
cfg['conv2_2'] = 7
cfg['conv3_1'] = 10
cfg['conv3_2'] = 12
cfg['conv3_3'] = 14
cfg['conv4_1'] = 17
cfg['conv4_2'] = 19
cfg['conv4_3'] = 22
cfg['conv5_1'] = 22
cfg['conv5_2'] = 22
cfg['conv5_3'] = 22
cfg['conv_middle_1'] = 'conv4_1'
cfg['conv_middle_2'] = 'conv4_2'
cfg['conv_middle_3'] = 'conv4_3'
cfg['conv_lowest_1'] = 'conv3_1'
cfg['conv_lowest_2'] = 'conv3_2'
cfg['conv_lowest_3'] = 'conv3_3'
cfg['conv_scale1_1'] = 'conv2_1'
cfg['conv_scale1_2'] = 'conv2_2'
print ('loading model ', net.name)
base_dir = "../imagenet_vgg_weights/"
layer_copy_count = 0
for layer in cfg.keys():
if layer in dont_load:
print (layer, 'skipped.')
continue
print ("Copying ", layer)
for name, module in net.named_children():
if layer == name and (not layer.startswith("conv_middle_")) and (not layer.startswith("conv_lowest_") and (not layer.startswith("conv_scale1_"))):
lyr = module
W = np.load(base_dir + layer + "W.npy")
b = np.load(base_dir + layer + "b.npy")
lyr.weight.data.copy_(torch.from_numpy(W))
lyr.bias.data.copy_(torch.from_numpy(b))
layer_copy_count += 1
elif (layer.startswith("conv_middle_") or layer.startswith("conv_lowest_") or layer.startswith("conv_scale1_")) and name == layer:
lyr = module
W = np.load(base_dir + cfg[layer] + "W.npy")
b = np.load(base_dir + cfg[layer] + "b.npy")
lyr.weight.data.copy_(torch.from_numpy(W))
lyr.bias.data.copy_(torch.from_numpy(b))
layer_copy_count += 1
print(layer_copy_count, "Copy count")
assert layer_copy_count == 21
print ('Done.')
'''
Function to get localization error (alias offset error)
Parameters
-----------
x_pred: (list) list of x-coordinates of prediction
y_pred: (list) list of y-coordinates of prediction
x_true: (list) list of x-coordinates of gt
y_true: (list) list of y-coordinates of gt
output_downscale: (int) scale in which LSC-CNN predicts
max_dist: (int, default=16) maximum distance beyond
which there's a penalty
NOTE: MLE is ALWAYS calculated in 1x scale i.e
scale of the input image and hence multiplication
with "output_downscale"
Returns
----------
off_err; (float) localization error
avg_precision: (float) average precision
avd_recall: (float) avg_recall
'''
def get_offset_error(x_pred, y_pred, x_true, y_true, output_downscale, max_dist=16):
if max_dist is None:
max_dist = 16
n = len(x_true)
m = len(x_pred)
if m == 0 or n == 0:
return 0
x_true *= output_downscale
y_true *= output_downscale
x_pred *= output_downscale
y_pred *= output_downscale
dx = np.expand_dims(x_true, 1) - x_pred
dy = np.expand_dims(y_true, 1) - y_pred
d = np.sqrt(dx ** 2 + dy ** 2)
assert d.shape == (n, m)
sorted_idx = np.asarray(np.unravel_index(np.argsort(d.ravel()), d.shape))
# Need to divide by n for average error
hit_thresholds = np.arange(12, -1, -1)
off_err, num_hits, fn = offset_sum(sorted_idx, d, n, m, max_dist, hit_thresholds, len(hit_thresholds))
off_err /= n
precisions = np.asarray(num_hits, dtype='float32') / m
recall = np.asarray(num_hits, dtype='float32') / ( np.asarray(num_hits, dtype='float32') + np.asarray(fn, dtype='float32'))
avg_precision = precisions.mean()
avg_recall = recall.mean()
return off_err, avg_precision, avg_recall
'''
Draws bounding box on predictions of LSC-CNN
Parameters
----------
image: (ndarray:HXWX3) input image
h_map: (HXW) map denoting height of the box
w_map: (HXW) map denoting width of the box
gt_pred_map: (HXW) binary map denoting points of prediction
prediction_downscale: (int) scale in which LSC-CNN predicts.
thickness: (int) thickness of bounding box
multi_colours: (bool) If True, plots different colours for different scales
Returns
----------
boxed_img: image with bounding boxes plotted
'''
def get_boxed_img(image, h_map, w_map, gt_pred_map, prediction_downscale, thickness=1, multi_colours=False):
if multi_colours:
colours = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (0, 255, 255)] # colours for [1/8, 1/4, 1/2] scales
if image.shape[2] != 3:
boxed_img = image.astype(np.uint8).transpose((1, 2, 0)).copy()
else:
boxed_img = image.astype(np.uint8).copy()
head_idx = np.where(gt_pred_map > 0)
H, W = boxed_img.shape[:2]
Y, X = head_idx[-2] , head_idx[-1]
for y, x in zip(Y, X):
h, w = h_map[y, x]*prediction_downscale, w_map[y, x]*prediction_downscale
if multi_colours:
selected_colour = colours[(BOX_SIZE_BINS.index(h // prediction_downscale)) // 3]
else:
selected_colour = (0, 255, 0)
if h//2 in BOXES[3] or h//2 in BOXES[2]:
t = 1
else:
t = thickness
cv2.rectangle(boxed_img, (max(int(prediction_downscale * x - w / 2), 0), max(int(prediction_downscale * y - h / 2), 0)),
(min(int(prediction_downscale * x + w - w / 2), W), min(int(prediction_downscale * y + h - h / 2), H)), selected_colour, t)
return boxed_img.transpose((2, 0, 1))
'''
Testing function for LSC-CNN.
Parameters
-----------
test_funcs: (python function) function to test the images
(returns 4 channel output [b_1, b_2, b_3, z] for gt and prediction)
dataset: (Object) DataReader Object
set_name: (string) sets the name for dataset to test on - either test or train
print_output: (bool) Dumps gt and predictions if True
Returns
----------
metrics_test: (dict) Dictionary of metrics
txt: (string) metrics in string format to log
'''
def test_lsccnn(test_funcs, dataset, set_name, network, print_output=False, thresh=0.2):
test_functions = []
global test_loss
global counter
test_loss = 0.
counter = 0.
metrics_test = {}
metrics_ = ['new_mae', 'mle', 'mse', 'loss1']
for k in metrics_:
metrics_test[k] = 0.0
global loss_weights
if loss_weights is None:
loss_weights = np.ones((len(PRED_DOWNSCALE_FACTORS), NUM_BOXES_PER_SCALE+1))
def test_function(img_batch, gt_batch, roi_batch):
global test_loss
global counter
gt_batch = (gt_batch > 0).astype(np.float32)
loss, pred_batch, gt_batch = test_funcs(img_batch, gt_batch, loss_weights, network)
test_loss += loss
counter += 1
return (*pred_batch), (*gt_batch)
if isinstance(print_output, str):
print_path = print_output
elif isinstance(print_output, bool) and print_output:
print_path = './models/dump'
else:
print_path = None
e = dataset.iterate_over_test_data(test_function, set_name)
for e_idx, e_iter in enumerate(e):
image_split = e_iter[1].split('/')
image_name = image_split[len(image_split)-1]
image = cv2.imread(e_iter[1])
maps = [(image, {}),
(e_iter[2], {'cmap': 'jet', 'vmin': 0., 'vmax': 1.})]
pred_dot_map, pred_box_map = get_box_and_dot_maps(e_iter[0][0:4], thresh=thresh) # prediction_downscale
# -- Plotting boxes
boxed_image_pred = get_boxed_img(image, pred_box_map, pred_box_map, \
pred_dot_map, prediction_downscale=2, \
thickness=2, multi_colours=False)
boxed_image_pred_path = os.path.join(print_path, image_name + '_boxed_image.png')
cv2.imwrite(boxed_image_pred_path, boxed_image_pred.astype(np.uint8).transpose((1, 2, 0)))
print_graph(maps, "", os.path.join(print_path, image_name))
# -- Calculate metrics
metrics_test = calculate_metrics(pred_dot_map, e_iter[2], metrics_test)
for m in metrics_:
metrics_test[m] /= float(e_idx+1)
metrics_test['mse'] = np.sqrt(metrics_test['mse'])
metrics_test['loss1'] = test_loss / float(counter)
txt = ''
for metric in metrics_test.keys():
if metric == "mle" and (args.mle == False):
continue
txt += '%s: %s ' % (metric, metrics_test[metric])
return metrics_test, txt
'''
This function calculates the various counting and localization metrics
Parameters
----------
pred: dot map prediction of LSC-CNN (HxW)
true: ground truth map (HxW)
metrics_test: dictionary of metrics
Returns
----------
metrics_test: updated dictionary of metrics
'''
def calculate_metrics(pred, true, metrics_test):
pred_count = np.sum(pred)
true_count = np.sum(true)
head_x_true, head_y_true = np.where(pred > 0)[-2:]
head_x_pred, head_y_pred = np.where(true > 0)[-2:]
if args.mle:
if len(head_x_pred) == 0:
off = 16*len(head_y_pred)
else:
off, _, _ = get_offset_error(head_x_pred, head_y_pred, head_x_true, head_y_true, output_downscale)
metrics_test['mle'] += off
metrics_test['new_mae'] += np.abs(true_count - pred_count)
metrics_test['mse'] += (true_count - pred_count) ** 2
return metrics_test
'''
This function finds the optimal threshold on the validation set.
Parameters
----------
f: (file object) file writer
iters: Number of iterations to run the binary search
test_funcs: lsccnn test function
splits: number of splits to the range of thresholds
beg: beginning threshold
end: ending threshold
Returns
----------
optimal_threshold: optimal threshold where the mae is
lowest on validation set.
'''
def find_class_threshold(f, dataset, iters, test_funcs, network, splits=10, beg=0.0, end=0.3):
for li_idx in range(iters):
avg_errors = []
threshold = list(np.arange(beg, end, (end - beg) / splits))
log(f, 'threshold:'+str(threshold))
for class_threshold in threshold:
avg_error = test_lsccnn(test_funcs, dataset, 'test_valid', network, True, thresh=class_threshold)
avg_errors.append(avg_error[0]['new_mae'])
log(f, "class threshold: %f, avg_error: %f" % (class_threshold, avg_error[0]['new_mae']))
mid = np.asarray(avg_errors).argmin()
beg = threshold[max(mid - 2, 0)]
end = threshold[min(mid + 2, splits - 1)]
log(f, "Best threshold: %f" % threshold[mid])
optimal_threshold = threshold[mid]
return optimal_threshold
'''
This function performs box NMS on the predictions of the net.
Parameters
----------
predictions: multiscale predictions - list of numpy maps
each map is of size 4 x H x W
Returns
----------
nms_out: Binary map of where the prediction person is
box_out: Size of the box at the predicted dot
NOTE: count(nms_out) == count(box_out)
'''
def box_NMS(predictions, thresh):
Scores = []
Boxes = []
for k in range(len(BOXES)):
scores = np.max(predictions[k], axis=0)
boxes = np.argmax(predictions[k], axis=0)
# index the boxes with BOXES to get h_map and w_map (both are the same for us)
mask = (boxes<3) # removing Z
boxes = (boxes+1) * mask
scores = (scores * mask) # + 100 # added 100 since we take logsoftmax and it's negative!!
boxes = (boxes==1)*BOXES[k][0] + (boxes==2)*BOXES[k][1] + (boxes==3)*BOXES[k][2]
Scores.append(scores)
Boxes.append(boxes)
x, y, h, w, scores = apply_nms.apply_nms(Scores, Boxes, Boxes, 0.5, thresh=thresh)
nms_out = np.zeros((predictions[0].shape[1], predictions[0].shape[2])) # since predictions[0] is of size 4 x H x W
box_out = np.zeros((predictions[0].shape[1], predictions[0].shape[2])) # since predictions[0] is of size 4 x H x W
for (xx, yy, hh) in zip(x, y, h):
nms_out[yy, xx] = 1
box_out[yy, xx] = hh
assert(np.count_nonzero(nms_out) == len(x))
return nms_out, box_out
"""
A function to return dotmaps and box maps of either gt
or predictions. In case of predictions, it would be NMSed
output and in case of gt maps, it would be would be from each
individual scale.
Parameters
----------
pred: list of ndarray (currently MUST be of length 3
- each for one scale)
Returns
----------
nms_out: dot map of NMSed output of the given predictions.
h: box map of NMSed output
"""
def get_box_and_dot_maps(pred, thresh):
assert(len(pred) == 4)
all_dot_maps = []
all_box_maps = []
# NMS on the multi-scale outputs
nms_out, h = box_NMS(pred, thresh)
return nms_out, h
'''
Main training code for LSC-CNN.
Parameters
-----------
network : (torch model) network. In this case len(network) == 1
dataset: (class object) data_reader class object
network_function: (class) network_functions() class object to get test and train
functions.
log_path: (str) path to log losses and stats.
Returns
----------
This method does not return anything. It directly logs all the losses,
metrics and statistics of training/validation/testing stages.
'''
def train_networks(network, dataset, network_functions, log_path):
snapshot_path = os.path.join(log_path, 'snapshots')
f = open(os.path.join(log_path, 'train0.log'), 'w')
# -- Logging Parameters
log(f, 'args: ' + str(args))
log(f, 'model: ' + str(network), False)
log(f, 'Training0...')
log(f, 'LR: %.12f.' % (args.lr))
log(f, 'Classification Model')
# -- Get train, test functions
train_funcs, test_funcs = network_functions.create_network_functions(network)
start_epoch = args.start_epoch
num_epochs = args.epochs
valid_losses = {}
test_losses = {}
train_losses = {}
for metric in ['loss1', 'new_mae']:
valid_losses[metric] = []
test_losses[metric] = []
for metric in ['loss1']:
train_losses[metric] = []
batch_size = args.batch_size
num_train_images = len(dataset.dataset_files['train'])
num_patches_per_image = args.patches
num_batches_per_epoch = num_patches_per_image * num_train_images // batch_size
if start_epoch > 0:
with open(os.path.join(snapshot_path, 'losses.pkl'), 'rb') as lossfile:
train_losses, valid_losses, test_losses = pickle.load(lossfile, encoding='latin1')
print ('loaded prev losses')
for metric in metrics:
try:
valid_losses[metric] = valid_losses[metric][:start_epoch]
except:
pass
test_losses[metric] = test_losses[metric][:start_epoch]
for metric in train_losses.keys():
train_losses[metric] = train_losses[metric][:start_epoch]
network, _= load_net(network,
network_functions, 0,
snapshot_path,
get_filename(\
network.name,
start_epoch))
# -- Main Training Loop
global loss_weights
if os.path.isfile("loss_weights.npy"):
loss_weights = np.load('loss_weights.npy')
else:
loss_weights = np.ones((4, 4))
HIST_GT = []
for e_i, epoch in enumerate(range(start_epoch, num_epochs)):
avg_loss = [0.0 for _ in range(1)]
hist_boxes = np.zeros((16,))
hist_boxes_gt = np.zeros((16,))
# b_i - batch index
for b_i in range(num_batches_per_epoch):
# Generate next training sample
Xs, Ys, _ = dataset.train_get_batch()
losses, hist_boxes, hist_boxes_gt = train_funcs[0](Xs, Ys, hist_boxes, hist_boxes_gt, loss_weights, network)
for scale_idx in range(1):
avg_loss[scale_idx] = avg_loss[scale_idx] + losses[scale_idx]
# Logging losses after 1k iterations.
if b_i % 1000 == 0:
log(f, 'Epoch %d [%d]: %s loss: %s.' % (epoch, b_i, [network.name], losses))
log(f, 'hist_boxes %s.' % (np.array_str(np.int32(hist_boxes))))
log(f, 'hist_boxes_gt %s.' % (np.array_str(np.int32(hist_boxes_gt))))
hist_boxes = np.zeros((16,))
hist_boxes_gt = np.zeros((16,))
HIST_GT.append(hist_boxes_gt)
if np.all(loss_weights == 1):
HIST_GT = np.asarray(HIST_GT)
HIST_GT = np.sum(HIST_GT, axis=0)
HIST_GT = np.reshape(HIST_GT, (4, 4))
loss_weights = compute_box_weights(HIST_GT)
np.save('loss_weights.npy', loss_weights)
print("Saving loss weights!! PLEASE re-run the code for training/testing")
exit()
# -- Stats update
avg_loss = [al / num_batches_per_epoch for al in avg_loss]
avg_loss = [av for av in avg_loss]
train_losses['loss1'].append(avg_loss)
epoch_test_losses, txt = test_lsccnn(test_funcs, dataset, 'test', network, True)
log(f, 'TEST epoch: ' + str(epoch) + ' ' + txt)
epoch_val_losses, txt = test_lsccnn(test_funcs, dataset, 'test_valid', network, True)
log(f, 'TEST valid epoch: ' + str(epoch) + ' ' + txt)
for metric in ['loss1', 'new_mae']:
valid_losses[metric].append(epoch_val_losses[metric])
test_losses[metric].append(epoch_test_losses[metric])
# Save networks
save_checkpoint({
'epoch': epoch + 1,
'state_dict': network.state_dict(),
'optimizer': network_functions.optimizers.state_dict(),
}, snapshot_path, get_filename(network.name, epoch + 1))
print ('saving graphs...')
with open(os.path.join(snapshot_path, 'losses.pkl'), 'wb') as lossfile:
pickle.dump((train_losses, valid_losses, test_losses), lossfile, protocol=2)
for metric in train_losses.keys():
if "maxima_split" not in metric:
if isinstance(train_losses[metric][0], list):
for i in range(len(train_losses[metric][0])):
plt.plot([a[i] for a in train_losses[metric]])
plt.savefig(os.path.join(snapshot_path, 'train_%s_%d.png' % (metric, i)))
plt.clf()
plt.close()
print(metric, "METRIC", train_losses[metric])
plt.plot(train_losses[metric])
plt.savefig(os.path.join(snapshot_path, 'train_%s.png' % metric))
plt.clf()
plt.close()
for metric in valid_losses.keys():
if isinstance(valid_losses[metric][0], list):
for i in range(len(valid_losses[metric][0])):
plt.plot([a[i] for a in valid_losses[metric]])
plt.savefig(os.path.join(snapshot_path, 'valid_%s_%d.png' % (metric, i)))
plt.clf()
plt.close()
plt.plot(valid_losses[metric])
plt.savefig(os.path.join(snapshot_path, 'valid_%s.png' % metric))
plt.clf()
plt.close()
for metric in test_losses.keys():
if isinstance(test_losses[metric][0], list):
for i in range(len(test_losses[metric][0])):
plt.plot([a[i] for a in test_losses[metric]])
plt.savefig(os.path.join(snapshot_path, 'test_%s_%d.png' % (metric, i)))
plt.clf()
plt.close()
plt.plot(test_losses[metric])
plt.savefig(os.path.join(snapshot_path, 'test_%s.png' % metric))
plt.clf()
plt.close()
# -- Finding best NMS Threshold
if args.threshold == -1:
threshold = find_class_threshold(f, dataset, 1, test_funcs, network)
log(f, "Best Threshold is", threshold)
else:
threshold = args.threshold
# Test the latest model and the best model
try:
min_epoch = np.argmin(map(sum, valid_losses['mae']))
min_epoch = np.argmin(valid_losses['new_mae'])
log(f, 'Done Training.\n Minimum loss %s at epoch %s' % (valid_losses['new_mae'][min_epoch], min_epoch))
except:
pass
log(f, '\nTesting ...')
_, txt = test_lsccnn(test_funcs, dataset, 'test', network, './models/dump_test', thresh=threshold)
log(f, 'TEST epoch: ' + str(num_epochs - 1) + ' ' + txt)
log(f, 'Exiting train...')