-
Notifications
You must be signed in to change notification settings - Fork 0
/
memory_saving_gradients.py
407 lines (328 loc) · 16.6 KB
/
memory_saving_gradients.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from toposort import toposort
import contextlib
import numpy as np
import tensorflow as tf
import tensorflow.contrib.graph_editor as ge
import time
import sys
sys.setrecursionlimit(10000)
# refers back to current module if we decide to split helpers out
util = sys.modules[__name__]
# getting rid of "WARNING:tensorflow:VARIABLES collection name is deprecated"
setattr(tf.GraphKeys, "VARIABLES", "variables")
# save original gradients since tf.gradient could be monkey-patched to point
# to our version
from tensorflow.python.ops import gradients as tf_gradients_lib
tf_gradients = tf_gradients_lib.gradients
MIN_CHECKPOINT_NODE_SIZE = 1024 # use lower value during testing
# specific versions we can use to do process-wide replacement of tf.gradients
def gradients_speed(ys, xs, grad_ys=None, **kwargs):
return gradients(ys, xs, grad_ys, checkpoints='speed', **kwargs)
def gradients_memory(ys, xs, grad_ys=None, **kwargs):
return gradients(ys, xs, grad_ys, checkpoints='memory', **kwargs)
def gradients_collection(ys, xs, grad_ys=None, **kwargs):
return gradients(ys, xs, grad_ys, checkpoints='collection', **kwargs)
def gradients(ys, xs, grad_ys=None, checkpoints='collection', **kwargs):
'''
Authors: Tim Salimans & Yaroslav Bulatov
memory efficient gradient implementation inspired by "Training Deep Nets with Sublinear Memory Cost"
by Chen et al. 2016 (https://arxiv.org/abs/1604.06174)
ys,xs,grad_ys,kwargs are the arguments to standard tensorflow tf.gradients
(https://www.tensorflow.org/versions/r0.12/api_docs/python/train.html#gradients)
'checkpoints' can either be
- a list consisting of tensors from the forward pass of the neural net
that we should re-use when calculating the gradients in the backward pass
all other tensors that do not appear in this list will be re-computed
- a string specifying how this list should be determined. currently we support
- 'speed': checkpoint all outputs of convolutions and matmuls. these ops are usually the most expensive,
so checkpointing them maximizes the running speed
(this is a good option if nonlinearities, concats, batchnorms, etc are taking up a lot of memory)
- 'memory': try to minimize the memory usage
(currently using a very simple strategy that identifies a number of bottleneck tensors in the graph to checkpoint)
- 'collection': look for a tensorflow collection named 'checkpoints', which holds the tensors to checkpoint
'''
# print("Calling memsaving gradients with", checkpoints)
if not isinstance(ys, list):
ys = [ys]
if not isinstance(xs, list):
xs = [xs]
bwd_ops = ge.get_backward_walk_ops([y.op for y in ys],
inclusive=True)
debug_print("bwd_ops: %s", bwd_ops)
# forward ops are all ops that are candidates for recomputation
fwd_ops = ge.get_forward_walk_ops([x.op for x in xs],
inclusive=True,
within_ops=bwd_ops)
debug_print("fwd_ops: %s", fwd_ops)
# exclude ops with no inputs
fwd_ops = [op for op in fwd_ops if op.inputs]
# don't recompute xs, remove variables
xs_ops = _to_ops(xs)
fwd_ops = [op for op in fwd_ops if not op in xs_ops]
fwd_ops = [op for op in fwd_ops if not '/assign' in op.name]
fwd_ops = [op for op in fwd_ops if not '/Assign' in op.name]
fwd_ops = [op for op in fwd_ops if not '/read' in op.name]
ts_all = ge.filter_ts(fwd_ops, True) # get the tensors
ts_all = [t for t in ts_all if '/read' not in t.name]
ts_all = set(ts_all) - set(xs) - set(ys)
# construct list of tensors to checkpoint during forward pass, if not
# given as input
if type(checkpoints) is not list:
if checkpoints == 'collection':
checkpoints = tf.get_collection('checkpoints')
elif checkpoints == 'speed':
# checkpoint all expensive ops to maximize running speed
checkpoints = ge.filter_ts_from_regex(
fwd_ops, 'conv2d|Conv|MatMul')
elif checkpoints == 'memory':
# remove very small tensors and some weird ops
def fixdims(t): # tf.Dimension values are not compatible with int, convert manually
try:
return [int(e if e.value is not None else 64) for e in t]
except:
return [0] # unknown shape
ts_all = [t for t in ts_all if np.prod(
fixdims(t.shape)) > MIN_CHECKPOINT_NODE_SIZE]
ts_all = [t for t in ts_all if 'L2Loss' not in t.name]
ts_all = [t for t in ts_all if 'entropy' not in t.name]
ts_all = [t for t in ts_all if 'FusedBatchNorm' not in t.name]
ts_all = [t for t in ts_all if 'Switch' not in t.name]
ts_all = [t for t in ts_all if 'dropout' not in t.name]
# filter out all tensors that are inputs of the backward graph
with util.capture_ops() as bwd_ops:
tf_gradients(ys, xs, grad_ys, **kwargs)
bwd_inputs = [t for op in bwd_ops for t in op.inputs]
# list of tensors in forward graph that is in input to bwd graph
ts_filtered = list(set(bwd_inputs).intersection(ts_all))
debug_print("Using tensors %s", ts_filtered)
# try two slightly different ways of getting bottlenecks tensors
# to checkpoint
for ts in [ts_filtered, ts_all]:
# get all bottlenecks in the graph
bottleneck_ts = []
for t in ts:
b = set(ge.get_backward_walk_ops(
t.op, inclusive=True, within_ops=fwd_ops))
f = set(ge.get_forward_walk_ops(
t.op, inclusive=False, within_ops=fwd_ops))
# check that there are not shortcuts
b_inp = set(
[inp for op in b for inp in op.inputs]).intersection(ts_all)
f_inp = set(
[inp for op in f for inp in op.inputs]).intersection(ts_all)
if not set(b_inp).intersection(f_inp) and len(b_inp)+len(f_inp) >= len(ts_all):
bottleneck_ts.append(t) # we have a bottleneck!
else:
debug_print("Rejected bottleneck candidate and ops %s", [
t] + list(set(ts_all) - set(b_inp) - set(f_inp)))
# success? or try again without filtering?
if len(bottleneck_ts) >= np.sqrt(len(ts_filtered)): # yes, enough bottlenecks found!
break
if not bottleneck_ts:
raise Exception(
'unable to find bottleneck tensors! please provide checkpoint nodes manually, or use checkpoints="speed".')
# sort the bottlenecks
bottlenecks_sorted_lists = tf_toposort(
bottleneck_ts, within_ops=fwd_ops)
sorted_bottlenecks = [
t for ts in bottlenecks_sorted_lists for t in ts]
# save an approximately optimal number ~ sqrt(N)
N = len(ts_filtered)
if len(bottleneck_ts) <= np.ceil(np.sqrt(N)):
checkpoints = sorted_bottlenecks
else:
step = int(np.ceil(len(bottleneck_ts) / np.sqrt(N)))
checkpoints = sorted_bottlenecks[step::step]
else:
raise Exception(
'%s is unsupported input for "checkpoints"' % (checkpoints,))
checkpoints = list(set(checkpoints).intersection(ts_all))
# at this point automatic selection happened and checkpoints is list of nodes
assert isinstance(checkpoints, list)
debug_print("Checkpoint nodes used: %s", checkpoints)
# better error handling of special cases
# xs are already handled as checkpoint nodes, so no need to include them
xs_intersect_checkpoints = set(xs).intersection(set(checkpoints))
if xs_intersect_checkpoints:
debug_print("Warning, some input nodes are also checkpoint nodes: %s",
xs_intersect_checkpoints)
ys_intersect_checkpoints = set(ys).intersection(set(checkpoints))
debug_print("ys: %s, checkpoints: %s, intersect: %s", ys, checkpoints,
ys_intersect_checkpoints)
# saving an output node (ys) gives no benefit in memory while creating
# new edge cases, exclude them
if ys_intersect_checkpoints:
debug_print("Warning, some output nodes are also checkpoints nodes: %s",
format_ops(ys_intersect_checkpoints))
# remove initial and terminal nodes from checkpoints list if present
checkpoints = list(set(checkpoints) - set(ys) - set(xs))
# check that we have some nodes to checkpoint
if not checkpoints:
raise Exception('no checkpoints nodes found or given as input! ')
# disconnect dependencies between checkpointed tensors
checkpoints_disconnected = {}
for x in checkpoints:
if x.op and x.op.name is not None:
grad_node = tf.stop_gradient(x, name=x.op.name+"_sg")
else:
grad_node = tf.stop_gradient(x)
checkpoints_disconnected[x] = grad_node
# partial derivatives to the checkpointed tensors and xs
ops_to_copy = fast_backward_ops(seed_ops=[y.op for y in ys],
stop_at_ts=checkpoints, within_ops=fwd_ops)
debug_print("Found %s ops to copy within fwd_ops %s, seed %s, stop_at %s",
len(ops_to_copy), fwd_ops, [r.op for r in ys], checkpoints)
debug_print("ops_to_copy = %s", ops_to_copy)
debug_print("Processing list %s", ys)
copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {})
copied_ops = info._transformed_ops.values()
debug_print("Copied %s to %s", ops_to_copy, copied_ops)
ge.reroute_ts(checkpoints_disconnected.values(),
checkpoints_disconnected.keys(), can_modify=copied_ops)
debug_print("Rewired %s in place of %s restricted to %s",
checkpoints_disconnected.values(), checkpoints_disconnected.keys(), copied_ops)
# get gradients with respect to current boundary + original x's
copied_ys = [info._transformed_ops[y.op]._outputs[0] for y in ys]
boundary = list(checkpoints_disconnected.values())
dv = tf_gradients(ys=copied_ys, xs=boundary+xs, grad_ys=grad_ys, **kwargs)
debug_print("Got gradients %s", dv)
debug_print("for %s", copied_ys)
debug_print("with respect to %s", boundary+xs)
inputs_to_do_before = [y.op for y in ys]
if grad_ys is not None:
inputs_to_do_before += grad_ys
wait_to_do_ops = list(copied_ops) + [g.op for g in dv if g is not None]
my_add_control_inputs(wait_to_do_ops, inputs_to_do_before)
# partial derivatives to the checkpointed nodes
# dictionary of "node: backprop" for nodes in the boundary
d_checkpoints = {r: dr for r, dr in zip(checkpoints_disconnected.keys(),
dv[:len(checkpoints_disconnected)])}
# partial derivatives to xs (usually the params of the neural net)
d_xs = dv[len(checkpoints_disconnected):]
# incorporate derivatives flowing through the checkpointed nodes
checkpoints_sorted_lists = tf_toposort(checkpoints, within_ops=fwd_ops)
for ts in checkpoints_sorted_lists[::-1]:
debug_print("Processing list %s", ts)
checkpoints_other = [r for r in checkpoints if r not in ts]
checkpoints_disconnected_other = [
checkpoints_disconnected[r] for r in checkpoints_other]
# copy part of the graph below current checkpoint node, stopping at
# other checkpoints nodes
ops_to_copy = fast_backward_ops(within_ops=fwd_ops, seed_ops=[
r.op for r in ts], stop_at_ts=checkpoints_other)
debug_print("Found %s ops to copy within %s, seed %s, stop_at %s",
len(ops_to_copy), fwd_ops, [r.op for r in ts],
checkpoints_other)
debug_print("ops_to_copy = %s", ops_to_copy)
if not ops_to_copy: # we're done!
break
copied_sgv, info = ge.copy_with_input_replacements(
ge.sgv(ops_to_copy), {})
copied_ops = info._transformed_ops.values()
debug_print("Copied %s to %s", ops_to_copy, copied_ops)
ge.reroute_ts(checkpoints_disconnected_other,
checkpoints_other, can_modify=copied_ops)
debug_print("Rewired %s in place of %s restricted to %s",
checkpoints_disconnected_other, checkpoints_other, copied_ops)
# gradient flowing through the checkpointed node
boundary = [info._transformed_ops[r.op]._outputs[0] for r in ts]
substitute_backprops = [d_checkpoints[r] for r in ts]
dv = tf_gradients(boundary,
checkpoints_disconnected_other+xs,
grad_ys=substitute_backprops, **kwargs)
debug_print("Got gradients %s", dv)
debug_print("for %s", boundary)
debug_print("with respect to %s", checkpoints_disconnected_other+xs)
debug_print("with boundary backprop substitutions %s",
substitute_backprops)
inputs_to_do_before = [d_checkpoints[r].op for r in ts]
wait_to_do_ops = list(copied_ops) + [g.op for g in dv if g is not None]
my_add_control_inputs(wait_to_do_ops, inputs_to_do_before)
# partial derivatives to the checkpointed nodes
for r, dr in zip(checkpoints_other, dv[:len(checkpoints_other)]):
if dr is not None:
if d_checkpoints[r] is None:
d_checkpoints[r] = dr
else:
d_checkpoints[r] += dr
# partial derivatives to xs (usually the params of the neural net)
d_xs_new = dv[len(checkpoints_other):]
for j in range(len(xs)):
if d_xs_new[j] is not None:
if d_xs[j] is None:
d_xs[j] = d_xs_new[j]
else:
d_xs[j] += d_xs_new[j]
return d_xs
def tf_toposort(ts, within_ops=None):
all_ops = ge.get_forward_walk_ops(
[x.op for x in ts], within_ops=within_ops)
deps = {}
for op in all_ops:
for o in op.outputs:
deps[o] = set(op.inputs)
sorted_ts = toposort(deps)
# only keep the tensors from our original list
ts_sorted_lists = []
for l in sorted_ts:
keep = list(set(l).intersection(ts))
if keep:
ts_sorted_lists.append(keep)
return ts_sorted_lists
def fast_backward_ops(within_ops, seed_ops, stop_at_ts):
bwd_ops = set(ge.get_backward_walk_ops(seed_ops, stop_at_ts=stop_at_ts))
ops = bwd_ops.intersection(within_ops).difference(
[t.op for t in stop_at_ts])
return list(ops)
@contextlib.contextmanager
def capture_ops():
"""Decorator to capture ops created in the block.
with capture_ops() as ops:
# create some ops
print(ops) # => prints ops created.
"""
micros = int(time.time()*10**6)
scope_name = str(micros)
op_list = []
with tf.name_scope(scope_name):
yield op_list
g = tf.get_default_graph()
op_list.extend(ge.select_ops(scope_name+"/.*", graph=g))
def _to_op(tensor_or_op):
if hasattr(tensor_or_op, "op"):
return tensor_or_op.op
return tensor_or_op
def _to_ops(iterable):
if not _is_iterable(iterable):
return iterable
return [_to_op(i) for i in iterable]
def _is_iterable(o):
try:
_ = iter(o)
except Exception:
return False
return True
DEBUG_LOGGING = False
def debug_print(s, *args):
"""Like logger.log, but also replaces all TensorFlow ops/tensors with their
names. Sensitive to value of DEBUG_LOGGING, see enable_debug/disable_debug
Usage:
debug_print("see tensors %s for %s", tensorlist, [1,2,3])
"""
if DEBUG_LOGGING:
formatted_args = [format_ops(arg) for arg in args]
print("DEBUG "+s % tuple(formatted_args))
def format_ops(ops, sort_outputs=True):
"""Helper method for printing ops. Converts Tensor/Operation op to op.name,
rest to str(op)."""
if hasattr(ops, '__iter__') and not isinstance(ops, str):
l = [(op.name if hasattr(op, "name") else str(op)) for op in ops]
if sort_outputs:
return sorted(l)
return l
else:
return ops.name if hasattr(ops, "name") else str(ops)
def my_add_control_inputs(wait_to_do_ops, inputs_to_do_before):
for op in wait_to_do_ops:
ci = [i for i in inputs_to_do_before if op.control_inputs is None or i not in op.control_inputs]
ge.add_control_inputs(op, ci)