-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhelper_yolo.py
176 lines (138 loc) · 5.83 KB
/
helper_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import glob
def draw_test_img(imgs_path, model):
images = [plt.imread(file) for file in glob.glob(imgs_path)]
batch = np.array([np.transpose(cv2.resize(image[300:650, 500:, :], (448, 448)), (2, 0, 1))
for image in images])
batch = 2 * (batch / 255.) - 1
out = model.predict(batch)
f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 6))
for i, ax in zip(range(len(batch)), [ax1, ax2, ax3, ax4]):
boxes = yolo_boxes(out[i], threshold=0.17)
ax.imshow(draw_box(boxes, images[i], [[500, 1280], [300, 650]]))
return out
def load_weights(model, yolo_weight_file):
data = np.fromfile(yolo_weight_file, np.float32)
data = data[4:]
index = 0
for layer in model.layers:
shape = [w.shape for w in layer.get_weights()]
if shape != []:
kshape, bshape = shape
bia = data[index:index + np.prod(bshape)].reshape(bshape)
index += np.prod(bshape)
ker = data[index:index + np.prod(kshape)].reshape(kshape)
index += np.prod(kshape)
layer.set_weights([ker, bia])
class Box:
def __init__(self):
self.x, self.y = float(), float()
self.w, self.h = float(), float()
self.c = float()
self.prob = float()
def overlap(x1, w1, x2, w2):
l1 = x1 - w1 / 2.
l2 = x2 - w2 / 2.
left = max(l1, l2)
r1 = x1 + w1 / 2.
r2 = x2 + w2 / 2.
right = min(r1, r2)
return right - left
def box_intersection(a, b):
w = overlap(a.x, a.w, b.x, b.w)
h = overlap(a.y, a.h, b.y, b.h)
if w < 0 or h < 0:
return 0
area = w * h
return area
def box_union(a, b):
i = box_intersection(a, b)
u = a.w * a.h + b.w * b.h - i
return u
def box_iou(a, b):
return box_intersection(a, b) / box_union(a, b)
def yolo_boxes(net_out, threshold=0.2, sqrt=1.8, C=20, B=2, S=7):
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair",
"cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant",
"sheep", "sofa", "train","tvmonitor"]
class_num = 6
boxes = []
SS = S * S # number of grid cells
prob_size = SS * C # class probabilities
conf_size = SS * B # confidences for each grid cell
probs = net_out[0: prob_size]
confs = net_out[prob_size: (prob_size + conf_size)]
cords = net_out[(prob_size + conf_size):]
probs = probs.reshape([SS, C])
confs = confs.reshape([SS, B])
cords = cords.reshape([SS, B, 4])
for grid in range(SS):
for b in range(B):
bx = Box()
bx.c = confs[grid, b]
bx.x = (cords[grid, b, 0] + grid % S) / S
bx.y = (cords[grid, b, 1] + grid // S) / S
bx.w = cords[grid, b, 2] ** sqrt
bx.h = cords[grid, b, 3] ** sqrt
p = probs[grid, :] * bx.c
if p[class_num] >= threshold:
bx.prob = p[class_num]
boxes.append(bx)
# combine boxes that are overlap
boxes.sort(key=lambda b: b.prob, reverse=True)
for i in range(len(boxes)):
boxi = boxes[i]
if boxi.prob == 0:
continue
for j in range(i + 1, len(boxes)):
boxj = boxes[j]
if box_iou(boxi, boxj) >= .4:
boxes[j].prob = 0.
boxes = [b for b in boxes if b.prob > 0.]
return boxes
def draw_box(boxes, im, crop_dim):
imgcv = np.copy(im)
[xmin, xmax] = crop_dim[0]
[ymin, ymax] = crop_dim[1]
for i, b in enumerate(boxes, 1):
h, w, _ = imgcv.shape
left = int((b.x - b.w / 2.) * w)
right = int((b.x + b.w / 2.) * w)
top = int((b.y - b.h / 2.) * h)
bot = int((b.y + b.h / 2.) * h)
left = int(left * (xmax - xmin) / w + xmin)
right = int(right * (xmax - xmin) / w + xmin)
top = int(top * (ymax - ymin) / h + ymin)
bot = int(bot * (ymax - ymin) / h + ymin)
left = max(left, 0)
right = min(right, w-1)
top = max(top, 0)
bot = min(bot, h-1)
cv2.rectangle(imgcv, (left, top), (right, bot), (0, 0, 255), thickness=3)
# draw label
label = 'car ' + str(i)
cv2.rectangle(imgcv, (left, top - 30), (right, top), (125, 125, 125), -1)
cv2.putText(imgcv, label, (left + 5, top - 7), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)
# draw thumbnail in highlight title
thumbnail = im[top:bot, left:right]
vehicle_thumb = cv2.resize(thumbnail, dsize=(120, 80)) # width=120, height=80
start_x = 750 + (i-1) * 30 + (i-1) * 120 # offset=30
imgcv[60:60+80, start_x:start_x+120, :] = vehicle_thumb
cv2.putText(imgcv, 'Lane', (280, 35), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 0), 2, cv2.LINE_AA)
cv2.putText(imgcv, 'Detected Vehicles', (800, 35), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 0), 2,
cv2.LINE_AA)
return imgcv
def draw_background_highlight(image, draw_img, w=1280):
mask = cv2.rectangle(np.copy(image), (0, 0), (w, 155), (0, 0, 0), thickness=cv2.FILLED)
return cv2.addWeighted(src1=mask, alpha=0.3, src2=draw_img, beta=0.8, gamma=0)
def draw_thumbnails(img_cp, img, window_list, thumb_w=120, thumb_h=80, off_x=30, off_y=30):
cv2.putText(img_cp, 'Lane', (280, 35), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 0), 2, cv2.LINE_AA)
cv2.putText(img_cp, 'Detected Vehicles', (600, 35), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 0), 2, cv2.LINE_AA)
for i, bbox in enumerate(window_list):
thumbnail = img[bbox[0][1]:bbox[1][1], bbox[0][0]:bbox[1][0]]
vehicle_thumb = cv2.resize(thumbnail, dsize=(thumb_w, thumb_h))
start_x = 640 + (i+1) * off_x + i * thumb_w
img_cp[off_y + 30:off_y + thumb_h + 30, start_x:start_x + thumb_w, :] = vehicle_thumb