-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathplot.py
129 lines (105 loc) · 3.42 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/bin/env python3
#
# Authors: Alexander Jung <[email protected]>
#
import os
import csv
import sys
import fire
import numpy as np
from time import gmtime
from time import strftime
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from common import sizeof_fmt, common_style, mk_groups, KBYTES, SMALL_SIZE, MEDIUM_SIZE, LARGE_SIZE
import pprint
pp = pprint.PrettyPrinter(indent=4)
def plot(data=None, output=None):
WORKDIR = os.getcwd()
RESULTSDIR = data
RESULTEXT = '.csv'
IMAGESTAT = 'imagestats'
IMAGE_SIZE_KEY = 'image_size'
NUMSYMS_KEY = 'number_symbols'
GROUP_BAR_WIDTH = .8
DEFAULT = '_'
files = []
apps = []
stats = {}
throughput_max = 0 # maximum observed rx mpps
bar_colors = {
'linux-dpdk-vhost-user': '#0B5DA2',
'linux-dpdk-vhost-net': '#000000',
'unikraft-vhost-user': '#DC000F',
'unikraft-vhost-net': '#8000CA'
}
markers = {
'linux-dpdk-vhost-user': 'x',
'linux-dpdk-vhost-net': ',',
'unikraft-vhost-user': '.',
'unikraft-vhost-net': '4'
}
labels = {
'linux-dpdk-vhost-user': 'Linux DPDK with vhost-user',
'linux-dpdk-vhost-net': 'Linux DPDK with vhost-net',
'unikraft-vhost-user': 'Rhea with vhost-user',
'unikraft-vhost-net': 'Rhea with vhost-net'
}
for f in os.listdir(RESULTSDIR):
if f.endswith(RESULTEXT):
index = f.replace(RESULTEXT,'')
files.append(f)
unikernel = index
with open(os.path.join(RESULTSDIR, f), 'r') as csvfile:
csvdata = csv.reader(csvfile, delimiter="\t")
next(csvdata) # skip header
for row in csvdata:
if unikernel not in stats:
stats[unikernel] = {}
throughput = float(row[1]) * KBYTES * KBYTES
stats[unikernel][str(row[0])] = throughput
if throughput > throughput_max:
throughput_max = throughput
# General style
common_style(plt)
throughput_max += KBYTES * KBYTES * 1 # add "margin" above tallest bar
# Setup matplotlib axis
fig = plt.figure(figsize=(8, 4))
renderer = fig.canvas.get_renderer()
# image size axis
ax1 = fig.add_subplot(1,1,1)
ax1.set_ylabel("Throughout (Mp/s)")
ax1.set_xlabel("Packet Size (Bytes)")
ax1.grid(which='major', axis='y', linestyle=':', alpha=0.5, zorder=0)
ax1_yticks = np.arange(0, throughput_max, step=KBYTES * KBYTES * 2)
ax1.set_yticks(ax1_yticks, minor=False)
ax1.set_yticklabels([sizeof_fmt(ytick, suffix='') for ytick in ax1_yticks])
ax1.set_ylim(0, throughput_max)
# Plot coordinates
xlabels = list(stats[list(stats.keys())[0]].keys())
# Adjust margining
fig.subplots_adjust(bottom=.15) #, top=1)
for unikernel in stats.keys():
ax1.plot(list(stats[unikernel].keys()), list(stats[unikernel].values()),
marker=markers[unikernel],
label=labels[unikernel],
zorder=3,
linewidth=3,
markersize=9,
markeredgewidth=4,
color=bar_colors[unikernel],
)
# set up x-axis labels
xticks = range(0, len(xlabels))
ax1.set_xticks(xticks)
ax1.margins(x=.05)
# Create a unique legend
handles, labels = plt.gca().get_legend_handles_labels()
by_label = dict(zip(labels, handles))
leg = plt.legend(by_label.values(), by_label.keys(), fontsize=LARGE_SIZE, loc='upper right', ncol=1)
leg.get_frame().set_linewidth(0.0)
# Save to file
fig.tight_layout()
fig.savefig(output) #, bbox_extra_artists=(ax1,), bbox_inches='tight')
if __name__ == '__main__':
fire.Fire(plot)