-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolor.c
176 lines (154 loc) · 4.76 KB
/
color.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*********************************************************************
* kd-forest *
* Copyright (C) 2014 Tavian Barnes <[email protected]> *
* *
* This program is free software. It comes without any warranty, to *
* the extent permitted by applicable law. You can redistribute it *
* and/or modify it under the terms of the Do What The Fuck You Want *
* To Public License, Version 2, as published by Sam Hocevar. See *
* the COPYING file or http://www.wtfpl.net/ for more details. *
*********************************************************************/
#include "color.h"
#include <math.h>
void
color_unpack(uint8_t pixel[3], uint32_t color)
{
pixel[0] = (color >> 16) & 0xFF;
pixel[1] = (color >> 8) & 0xFF;
pixel[2] = color & 0xFF;
}
void
color_set_RGB(double coords[3], uint32_t color)
{
uint8_t pixel[3];
color_unpack(pixel, color);
for (int i = 0; i < 3; ++i) {
coords[i] = pixel[i]/255.0;
}
}
// Inverse gamma for sRGB
double
sRGB_C_inv(double t)
{
if (t <= 0.040449936) {
return t/12.92;
} else {
return pow((t + 0.055)/1.055, 2.4);
}
}
static void
color_set_XYZ(double XYZ[3], uint32_t color)
{
double RGB[3];
color_set_RGB(RGB, color);
RGB[0] = sRGB_C_inv(RGB[0]);
RGB[1] = sRGB_C_inv(RGB[1]);
RGB[2] = sRGB_C_inv(RGB[2]);
XYZ[0] = 0.4123808838268995*RGB[0] + 0.3575728355732478*RGB[1] + 0.1804522977447919*RGB[2];
XYZ[1] = 0.2126198631048975*RGB[0] + 0.7151387878413206*RGB[1] + 0.0721499433963131*RGB[2];
XYZ[2] = 0.0193434956789248*RGB[0] + 0.1192121694056356*RGB[1] + 0.9505065664127130*RGB[2];
}
// CIE L*a*b* and L*u*v* gamma
static double
Lab_f(double t)
{
if (t > 216.0/24389.0) {
return pow(t, 1.0/3.0);
} else {
return 841.0*t/108.0 + 4.0/29.0;
}
}
// sRGB white point (CIE D50) in XYZ coordinates
static const double WHITE[] = {
[0] = 0.9504060171449392,
[1] = 0.9999085943425312,
[2] = 1.089062231497274,
};
void
color_set_Lab(double coords[3], uint32_t color)
{
double XYZ[3];
color_set_XYZ(XYZ, color);
double fXYZ[] = {
[0] = Lab_f(XYZ[0]/WHITE[0]),
[1] = Lab_f(XYZ[1]/WHITE[1]),
[2] = Lab_f(XYZ[2]/WHITE[2]),
};
coords[0] = 116.0*fXYZ[1] - 16.0;
coords[1] = 500.0*(fXYZ[0] - fXYZ[1]);
coords[2] = 200.0*(fXYZ[1] - fXYZ[2]);
}
void
color_set_Luv(double coords[3], uint32_t color)
{
double XYZ[3];
color_set_XYZ(XYZ, color);
double uv_denom = XYZ[0] + 15.0*XYZ[1] + 3.0*XYZ[2];
if (uv_denom == 0.0) {
coords[0] = 0.0;
coords[1] = 0.0;
coords[2] = 0.0;
return;
}
double white_uv_denom = WHITE[0] + 16.0*WHITE[1] + 3.0*WHITE[2];
double fY = Lab_f(XYZ[1]/WHITE[1]);
double uprime = 4.0*XYZ[0]/uv_denom;
double unprime = 4.0*WHITE[0]/white_uv_denom;
double vprime = 9.0*XYZ[1]/uv_denom;
double vnprime = 9.0*WHITE[1]/white_uv_denom;
coords[0] = 116.0*fY - 16.0;
coords[1] = 13.0*coords[0]*(uprime - unprime);
coords[2] = 13.0*coords[0]*(vprime - vnprime);
}
int
color_comparator(const void *a, const void *b)
{
uint8_t aRGB[3], bRGB[3];
color_unpack(aRGB, *(uint32_t *)a);
color_unpack(bRGB, *(uint32_t *)b);
int anum = aRGB[1] - aRGB[2], adenom = 2*aRGB[0] - aRGB[1] - aRGB[2];
int bnum = bRGB[1] - bRGB[2], bdenom = 2*bRGB[0] - bRGB[1] - bRGB[2];
// The hue angle is defined as atan2(sqrt(3)*n/d) (+ 2*pi if negative). But
// since atan2() is expensive, we compute an equivalent ordering while
// avoiding trig calls. First, handle the quadrants. We have:
//
// hue(n, d)
// | d >= 0 && n == 0 = 0
// | d >= 0 && n > 0 = atan(n/d)
// | d >= 0 && n < 0 = atan(n/d) + 2*pi
// | d < 0 = atan(n/d) + pi
//
// and since atan(n/d)'s range is [-pi/2, pi/2], each chunk can be strictly
// ordered relative to the other chunks.
if (adenom >= 0) {
if (anum >= 0) {
if (bdenom < 0 || bnum < 0) {
return -1;
}
} else {
if (bdenom < 0 || bnum >= 0) {
return 1;
}
}
} else if (bdenom >= 0) {
if (bnum >= 0) {
return 1;
} else {
return -1;
}
}
// Special-case zero numerators, because we treat 0/0 as 0, not NaN
if (anum == 0 || bnum == 0) {
int lhs = adenom >= 0 ? anum : -anum;
int rhs = bdenom >= 0 ? bnum : -bnum;
return lhs - rhs;
}
// The points are in the same/comparable quadrants. We can still avoid
// calculating atan(n/d) though, because it's an increasing function in n/d.
// We can also avoid a division, by noting that an/ad < bn/bd iff
// an*bd*sgn(ad*bd) < bn*ad*sgn(ad*bd). Due to the logic above, both
// denominators must have the same sign, so the sgn()s are redundant.
int lhs = anum*bdenom;
int rhs = bnum*adenom;
return lhs - rhs;
}