-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
229 lines (189 loc) · 7.65 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from ultralytics import YOLO
import streamlit as st
import cv2
import pafy
import pickle
import settings
#loaded_model=pickle.load(open('C:/Users/MY PC/Desktop/yolov8/yolov8-streamlit-detection-tracking/weights/yolov8.pkl', 'rb'))
with open('C:/Users/asus/OneDrive/Desktop/Waste Classification/Waste-Classification-Model-Using-YOLOv8/weights/yolov8 (1).pkl', 'rb') as file:
model1= pickle.load(file)
def load_model(model_path):
"""
Loads a YOLO object detection model from the specified model_path.
Parameters:
model_path (str): The path to the YOLO model file.
Returns:
A YOLO object detection model.
"""
model = YOLO('C:/Users/asus/OneDrive/Desktop/Waste Classification/Waste-Classification-Model-Using-YOLOv8/weights/yoloooo.pt')
return model
def display_tracker_options():
display_tracker = st.radio("Display Tracker", ('Yes', 'No'))
is_display_tracker = True if display_tracker == 'Yes' else False
if is_display_tracker:
tracker_type = st.radio("Tracker", ("bytetrack.yaml", "botsort.yaml"))
return is_display_tracker, tracker_type
return is_display_tracker, None
def _display_detected_frames(conf, model, st_frame, image, is_display_tracking=None, tracker=None):
"""
Display the detected objects on a video frame using the YOLOv8 model.
Args:
- conf (float): Confidence threshold for object detection.
- model (YoloV8): A YOLOv8 object detection model.
- st_frame (Streamlit object): A Streamlit object to display the detected video.
- image (numpy array): A numpy array representing the video frame.
- is_display_tracking (bool): A flag indicating whether to display object tracking (default=None).
Returns:
None
"""
# Resize the image to a standard size
image = cv2.resize(image, (720, int(720*(9/16))))
# Display object tracking, if specified
if is_display_tracking:
res = model.track(image, conf=conf, persist=True, tracker=tracker)
else:
# Predict the objects in the image using the YOLOv8 model
res = model.predict(image, conf=conf)
# # Plot the detected objects on the video frame
res_plotted = res[0].plot()
st_frame.image(res_plotted,
caption='Detected Video',
channels="BGR",
use_column_width=True
)
def play_youtube_video(conf, model):
"""
Plays a webcam stream. Detects Objects in real-time using the YOLOv8 object detection model.
Parameters:
conf: Confidence of YOLOv8 model.
model: An instance of the `YOLOv8` class containing the YOLOv8 model.
Returns:
None
Raises:
None
"""
source_youtube = st.sidebar.text_input("YouTube Video url")
is_display_tracker, tracker = display_tracker_options()
if st.sidebar.button('Detect Trash'):
try:
video = pafy.new(source_youtube)
best = video.getbest(preftype="mp4")
vid_cap = cv2.VideoCapture(best.url)
st_frame = st.empty()
while (vid_cap.isOpened()):
success, image = vid_cap.read()
if success:
_display_detected_frames(conf,
model,
st_frame,
image,
is_display_tracker,
tracker
)
else:
vid_cap.release()
break
except Exception as e:
st.sidebar.error("Error loading video: " + str(e))
#def play_rtsp_stream(conf, model):
"""
Plays an rtsp stream. Detects Objects in real-time using the YOLOv8 object detection model.
Parameters:
conf: Confidence of YOLOv8 model.
model: An instance of the `YOLOv8` class containing the YOLOv8 model.
Returns:
None
Raises:
None
"""
source_rtsp = st.sidebar.text_input("rtsp stream url")
is_display_tracker, tracker = display_tracker_options()
if st.sidebar.button('Detect trash'):
try:
vid_cap = cv2.VideoCapture(source_rtsp)
st_frame = st.empty()
while (vid_cap.isOpened()):
success, image = vid_cap.read()
if success:
_display_detected_frames(conf,
model,
st_frame,
image,
is_display_tracker,
tracker
)
else:
vid_cap.release()
break
except Exception as e:
st.sidebar.error("Error loading RTSP stream: " + str(e))
def play_webcam(conf, model):
"""
Plays a webcam stream. Detects Objects in real-time using the YOLOv8 object detection model.
Parameters:
conf: Confidence of YOLOv8 model.
model: An instance of the `YOLOv8` class containing the YOLOv8 model.
Returns:
None
Raises:
None
"""
source_webcam = settings.WEBCAM_PATH
is_display_tracker, tracker = display_tracker_options()
if st.sidebar.button('Detect Trash'):
try:
vid_cap = cv2.VideoCapture(source_webcam)
st_frame = st.empty()
while (vid_cap.isOpened()):
success, image = vid_cap.read()
if success:
_display_detected_frames(conf,
model,
st_frame,
image,
is_display_tracker,
tracker,
)
else:
vid_cap.release()
break
except Exception as e:
st.sidebar.error("Error loading video: " + str(e))
def play_stored_video(conf, model):
"""
Plays a stored video file. Tracks and detects objects in real-time using the YOLOv8 object detection model.
Parameters:
conf: Confidence of YOLOv8 model.
model: An instance of the `YOLOv8` class containing the YOLOv8 model.
Returns:
None
Raises:
None
"""
source_vid = st.sidebar.selectbox(
"Choose a video...", settings.VIDEOS_DICT.keys())
is_display_tracker, tracker = display_tracker_options()
with open(settings.VIDEOS_DICT.get(source_vid), 'rb') as video_file:
video_bytes = video_file.read()
if video_bytes:
st.video(video_bytes)
if st.sidebar.button('Detect Video Trash'):
try:
vid_cap = cv2.VideoCapture(
str(settings.VIDEOS_DICT.get(source_vid)))
st_frame = st.empty()
while (vid_cap.isOpened()):
success, image = vid_cap.read()
if success:
_display_detected_frames(conf,
model,
st_frame,
image,
is_display_tracker,
tracker
)
else:
vid_cap.release()
break
except Exception as e:
st.sidebar.error("Error loading video: " + str(e))