-
Notifications
You must be signed in to change notification settings - Fork 0
/
recalg.v
485 lines (385 loc) · 16.2 KB
/
recalg.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
(**************************************************************)
(* Copyright Dominique Larchey-Wendling [*] *)
(* *)
(* [*] Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import Arith Lia List Bool Eqdep_dec .
From Undecidability.Shared.Libs.DLW
Require Import utils_tac utils_nat utils_list finite pos vec.
Set Implicit Arguments.
Set Default Proof Using "Type".
Local Reserved Notation " '[|' f '|]' " (at level 0).
Local Reserved Notation "'⟦' f '⟧'".
Section Recursive_algorithms.
Unset Elimination Schemes.
Inductive recalg : nat -> Type :=
| ra_cst : nat -> recalg 0
| ra_zero : recalg 1
| ra_succ : recalg 1
| ra_proj : forall k, pos k -> recalg k
| ra_comp : forall k i, recalg k -> vec (recalg i) k -> recalg i
| ra_rec : forall k, recalg k -> recalg (S (S k)) -> recalg (S k)
| ra_min : forall k, recalg (S k) -> recalg k
.
Set Elimination Schemes.
Section recalg_rect.
Variable P : forall k, recalg k -> Type.
Hypothesis Pcst : forall n, P (ra_cst n).
Hypothesis Pzero : P ra_zero.
Hypothesis Psucc : P ra_succ.
Hypothesis Pproj : forall k p, P (@ra_proj k p).
Hypothesis Pcomp : forall k i f gj, P f -> (forall p, @P i (@vec_pos _ k gj p))
-> P (ra_comp f gj).
Hypothesis Prec : forall k f g, @P k f -> P g -> P (ra_rec f g).
Hypothesis Pmin : forall k f, @P (S k) f -> P (ra_min f).
Fixpoint recalg_rect k f { struct f } : @P k f :=
match f with
| ra_cst n => Pcst n
| ra_zero => Pzero
| ra_succ => Psucc
| ra_proj p => Pproj p
| ra_comp f gj => Pcomp _ [|f|] (fun p => [|vec_pos gj p|])
| ra_rec f g => Prec [|f|] [|g|]
| ra_min f => Pmin [|f|]
end
where "[| f |]" := (@recalg_rect _ f).
End recalg_rect.
Definition recalg_rec (P : forall k, recalg k -> Set) := recalg_rect P.
Definition recalg_ind (P : forall k, recalg k -> Prop) := recalg_rect P.
Section recalg_rec_type.
Variables (X : Type) (P : nat -> Type).
Hypothesis Pcst : P 0.
Hypothesis Pzero : P 1.
Hypothesis Psucc : P 1.
Hypothesis Pproj : forall k (p : pos k), P k.
Hypothesis Pcomp : forall k i, P k -> vec (P i) k -> P i.
Hypothesis Prec : forall k, P k -> P (S (S k)) -> P (S k).
Hypothesis Pmin : forall k, P (S k) -> P k.
Fixpoint recalg_rec_type k (f : recalg k) { struct f } : P k :=
match f in recalg i return P i with
| ra_cst n => Pcst
| ra_zero => Pzero
| ra_succ => Psucc
| ra_proj p => Pproj p
| ra_comp f gj => Pcomp [|f|] (vec_map (fun f => @recalg_rec_type _ f) gj)
| ra_rec f g => Prec [|f|] [|g|]
| ra_min f => Pmin [|f|]
end
where "[| f |]" := (@recalg_rec_type _ f).
End recalg_rec_type.
Definition ra_size k : recalg k -> nat.
Proof.
induction 1 as [ | | | | k i Hf Hg | k Hf Hg | k Hf ]
using recalg_rec_type.
+ exact 1.
+ exact 1.
+ exact 1.
+ exact 1.
+ exact (1+Hf+vec_sum Hg).
+ exact (1+Hf+Hg).
+ exact (1+Hf).
Defined.
Section recalg_inj.
(* Injectivity is not a given for dependently typed constructors but it holds
when the dependent parameter is from a set (ie a Type with decidable equality *)
Let nat_dep_inj (P : nat -> Type) n x y : existT P n x = existT P n y -> x = y.
Proof. apply inj_pair2_eq_dec, eq_nat_dec. Qed.
Local Ltac inj := let H := fresh in intros H; injection H; clear H; auto.
Local Ltac diauto :=
repeat match goal with
H: existT _ _ _ = existT _ _ _ |- _ => apply nat_dep_inj in H
end; auto.
Fact ra_cst_inj n m : ra_cst n = ra_cst m -> n = m.
Proof. inj. Qed.
Fact ra_proj_inj k (p q : pos k) : ra_proj p = ra_proj q -> p = q.
Proof. inj. Qed.
(* This one is more subtle and requires type casts *)
Fact ra_comp_inj k k' i f f' gj gj' :
@ra_comp k i f gj = @ra_comp k' i f' gj'
-> exists H : k = k', eq_rect _ _ f _ H = f'
/\ eq_rect _ _ gj _ H = gj'.
Proof.
inj; intros ? ? H; exists H; subst; simpl; diauto.
Qed.
Fact ra_rec_inj k f g f' g' : @ra_rec k f g = ra_rec f' g' -> f = f' /\ g = g'.
Proof.
inj; intros; diauto.
Qed.
Fact ra_min_inj k f f' : @ra_min k f = ra_min f' -> f = f'.
Proof.
inj; intros; diauto.
Qed.
End recalg_inj.
End Recursive_algorithms.
Definition functional X Y (f : X -> Y -> Prop) := forall x y1 y2, f x y1 -> f x y2 -> y1 = y2.
Definition total X Y (f : X -> Y -> Prop) := forall x, exists y, f x y.
Section recursor.
Variables (F : nat -> Prop) (G : nat -> nat -> nat -> Prop).
Fixpoint μ_rec n :=
match n with
| 0 => F
| S n => fun x => exists y, μ_rec n y /\ G n y x
end.
Fact μ_rec_inv n x : μ_rec n x -> exists s, F (s 0)
/\ s n = x
/\ forall i, i < n -> G i (s i) (s (S i)).
Proof.
revert x; induction n as [ | n IHn ]; intros x; simpl.
+ exists (fun _ => x); msplit 2; auto; intros; lia.
+ intros (y & H1 & H2).
destruct (IHn _ H1) as (s & H3 & H4 & H5).
exists (fun i => if le_lt_dec (S n) i then x else s i); msplit 2; auto.
* destruct (le_lt_dec (S n) (S n)); auto; lia.
* intros i Hi.
destruct (le_lt_dec (S n) i); destruct (le_lt_dec (S n) (S i)); auto; try lia.
- replace i with n by lia.
rewrite H4; auto.
- apply H5; lia.
Qed.
Theorem μ_rec_eq n x : μ_rec n x <-> exists s, F (s 0)
/\ s n = x
/\ forall i, i < n -> G i (s i) (s (S i)).
Proof.
split.
+ apply μ_rec_inv.
+ intros (s & H1 & H2 & H3).
rewrite <- H2; clear x H2.
revert s H1 H3.
induction n as [ | n IHn ]; intros s H1 H2; simpl; auto.
exists (s n); split; auto.
Qed.
Hypothesis (Ffun : forall n m, F n -> F m -> n = m)
(Gfun : forall x y n m, G x y n -> G x y m -> n = m).
Fact μ_rec_fun : functional μ_rec.
Proof using Ffun Gfun.
intros n; induction n as [ | n IHn ]; simpl; auto.
intros x y (a & H1 & H2) (b & H3 & H4).
specialize (IHn _ _ H1 H3); subst b.
revert H2 H4; apply Gfun.
Qed.
End recursor.
Section minimization.
Variables (R : nat -> nat -> Prop)
(Rfun : forall n u v, R n u -> R n v -> u = v).
Definition μ_min n := R n 0 /\ forall i, i < n -> exists u, R i (S u).
Fact μ_min_eq n : μ_min n <-> R n 0 /\ exists s, forall i, i < n -> R i (S (s i)).
Proof.
unfold μ_min; split; intros [ H0 H ]; split; auto.
+ apply fin_reif_nat with (1 := H).
+ clear H0; destruct H as (s & Hs).
intros i ?; exists (s i); auto.
Qed.
Fact μ_min_fun n m : μ_min n -> μ_min m -> n = m.
Proof using Rfun.
intros (H1 & H2) (H3 & H4).
destruct (lt_eq_lt_dec n m) as [ [ H | ] | H ]; auto;
[ apply H4 in H | apply H2 in H ]; destruct H as (u & Hu);
[ generalize (Rfun H1 Hu) | generalize (Rfun H3 Hu) ]; discriminate.
Qed.
Hypothesis HR : forall x, exists y, R x y.
Fact μ_min_of_total : (exists n, μ_min n) <-> exists x, R x 0.
Proof using Rfun HR.
split.
+ intros (n & ? & _); exists n; auto.
+ intros H.
destruct first_which_ni with (2 := H) as (n & H1 & H2).
* intros n; destruct (HR n) as ([ | k] & Hk); auto.
right; intros C; generalize (Rfun Hk C); discriminate.
* exists n; split; auto.
intros i Hi; apply H2 in Hi.
destruct (HR i) as ([ | k] & Hk); try tauto.
exists k; auto.
Qed.
End minimization.
Section relational_semantics.
(* Recursive functions can be interpreted in Coq as (functional) relations *)
Notation natfun := (fun k => vec nat k -> nat -> Prop).
Section defs.
Definition s_cst c : natfun 0 := fun _ x => x=c.
Definition s_zero : natfun 1 := fun _ x => x=0.
Definition s_succ : natfun 1 := fun v x => x=S (vec_head v).
Definition s_proj k (p : pos k) : natfun k := fun v x => vec_pos v p = x.
Variable k i : nat.
Implicit Types (f : natfun k) (g : natfun (S k)) (h : natfun (S (S k))) (gj : vec (natfun i) k).
Definition s_comp f gj : natfun i := fun v x => exists gl, f gl x /\ forall p, vec_pos gj p v (vec_pos gl p).
(* the recursor s_rec_r f h n v x
<-> exists x0,...,xn, f v x0,
h (0##x0##v) x1,
h (1##x1##v) x2,
...
h (.##..##v) xn,
and xn = x
**)
Definition s_rec f h v := μ_rec (f (vec_tail v)) (fun x y => h (x##y##vec_tail v)) (vec_head v).
Theorem s_rec_eq f h v x : s_rec f h v x <-> exists s, f (vec_tail v) (s 0)
/\ s (vec_head v) = x
/\ forall i, i < vec_head v -> h (i##s i##vec_tail v) (s (S i)).
Proof. vec split v with n; apply μ_rec_eq. Qed.
Definition s_min g v := μ_min (fun n => g (n##v)).
End defs.
(* we define the semantics of a recursive algorithm of arity k
which is a relation vec nat k -> nat -> Prop, obviously functional (see below)
We interpret the constants ra_* with the corresponding s_* operator on relations
**)
Definition ra_rel : forall k, recalg k -> natfun k.
Proof.
apply recalg_rect with (P := fun k _ => natfun k).
exact s_cst.
exact s_zero.
exact s_succ.
exact s_proj.
intros ? ? ? ? hf hgj; exact (s_comp hf (vec_set_pos hgj)).
intros ? ? ? hf hg; exact (s_rec hf hg).
intros ? ? hf; exact (s_min hf).
Defined.
Notation "[| f |]" := (@ra_rel _ f) (at level 0).
Fact ra_rel_fix_cst i : [| ra_cst i |] = s_cst i. Proof. reflexivity. Qed.
Fact ra_rel_fix_zero : [| ra_zero |] = s_zero. Proof. reflexivity. Qed.
Fact ra_rel_fix_succ : [| ra_succ |] = s_succ. Proof. reflexivity. Qed.
Fact ra_rel_fix_proj k p : [| @ra_proj k p |] = s_proj p. Proof. reflexivity. Qed.
Fact ra_rel_fix_rec k f g : [| @ra_rec k f g |] = s_rec [|f|] [|g|]. Proof. reflexivity. Qed.
Fact ra_rel_fix_min k f : [| @ra_min k f |] = s_min [|f|]. Proof. reflexivity. Qed.
Fact ra_rel_fix_comp k i f gj : [| @ra_comp k i f gj |] = s_comp [|f|] (vec_map (fun x => [|x|]) gj).
Proof.
simpl ra_rel; f_equal.
apply vec_pos_ext; intros p.
rewrite vec_pos_set, vec_pos_map; trivial.
Qed.
Section functional.
Lemma s_cst_fun c : functional (s_cst c).
Proof. intros v x y Hx Hy; rewrite Hy; trivial. Qed.
Lemma s_zero_fun : functional s_zero.
Proof. intros v x y Hx Hy; rewrite Hy; trivial. Qed.
Lemma s_succ_fun : functional s_succ.
Proof. intros v x y Hx Hy; rewrite Hy; trivial. Qed.
Lemma s_proj_fun k p : functional (@s_proj k p).
Proof.
intros v x y Hx Hy.
red in Hx, Hy.
rewrite <- Hx.
trivial.
Qed.
Variable k i : nat.
Implicit Types (f : natfun k) (gj : vec (natfun i) k) (g : natfun (S k)) (h : natfun (S (S k))).
Lemma s_comp_fun f gj : functional f -> (forall p, functional (vec_pos gj p)) -> functional (s_comp f gj).
Proof.
intros f_fun gj_fun v x y [ gx [ Hx1 Hx2 ] ] [ gy [ Hy1 Hy2 ] ].
replace gx with gy in Hx1.
+ apply (@f_fun gy); trivial.
+ apply vec_pos_ext.
intros p; apply (gj_fun p v); auto.
Qed.
Lemma s_rec_fun f h : functional f -> functional h -> functional (s_rec f h).
Proof.
intros Hf Hh ? ? ?.
apply μ_rec_fun.
+ apply Hf.
+ intros ? ? ? ? ?; apply Hh; auto.
Qed.
Lemma s_min_fun g : functional g -> functional (s_min g).
Proof.
intros Hg ? ? ?; apply μ_min_fun.
intros ? ? ?; apply Hg.
Qed.
End functional.
Hint Resolve s_cst_fun s_zero_fun s_succ_fun s_proj_fun s_rec_fun s_min_fun : core.
(* [| f |] is a functional/deterministic relation *)
Theorem ra_rel_fun k (f : recalg k) v x y : [|f|] v x -> [|f|] v y -> x = y.
Proof.
revert v x y; change (functional [|f|]).
induction f; try (simpl; auto; fail).
rewrite ra_rel_fix_comp.
apply s_comp_fun; auto.
intro; rewrite vec_pos_map; auto.
Qed.
Section total.
Fact ra_cst_tot n : total [| ra_cst n |].
Proof. intros ?; exists n; simpl; red; auto. Qed.
Fact ra_zero_tot : total [| ra_zero |].
Proof. intros ?; exists 0; simpl; red; auto. Qed.
Fact ra_succ_tot : total [| ra_succ |].
Proof. intros v; exists (S (vec_head v)); simpl; red; auto. Qed.
Fact ra_proj_tot n p : total [| @ra_proj n p |].
Proof. intros v; exists (vec_pos v p); simpl; red; auto. Qed.
Fact ra_rec_tot n f g : total [|f|] -> total [|g|] -> total [|@ra_rec n f g|].
Proof.
intros Hf Hg v; vec split v with x.
simpl; induction x as [ | x IHx ]; simpl.
+ destruct (Hf v) as (y & Hy).
exists y; red; simpl; auto.
+ destruct IHx as (y & Hy).
destruct (Hg (x##y##v)) as (z & Hz).
exists z, y; simpl; split; auto.
Qed.
Variables (k i : nat) (f : recalg k) (g : vec (recalg i) k)
(Hf : total [|f|]) (Hg : forall p, total [|vec_pos g p|]).
Fact ra_comp_tot : total [|ra_comp f g|].
Proof using Hf Hg.
intros v.
assert (H1 : forall p, exists x, [|vec_pos g p|] v x) by (intro; apply Hg).
apply vec_reif in H1; destruct H1 as (w & Hw).
destruct (Hf w) as (y & Hy).
exists y, w; split; auto.
intro; rewrite vec_pos_set; auto.
Qed.
End total.
Section prim_rec.
Definition prim_rec : forall n, recalg n -> Prop.
Proof.
apply recalg_rect.
+ intros; exact True.
+ exact True.
+ exact True.
+ intros; exact True.
+ intros k i _ _ H1 H2; exact (H1 /\ forall p, H2 p).
+ intros k _ _ H1 H2; exact (H1 /\ H2).
+ intros; exact False.
Defined.
Definition prim_rec_bool : forall n, recalg n -> bool.
Proof.
apply recalg_rect.
+ intros; exact true.
+ exact true.
+ exact true.
+ intros; exact true.
+ intros k i _ _ H1 H2.
exact (andb H1 (fold_right andb true (map H2 (pos_list _)))).
+ intros k _ _ H1 H2; exact (andb H1 H2).
+ intros; exact false.
Defined.
Let fold_right_andb l : fold_right andb true l = true <-> forall x, In x l -> x = true.
Proof.
induction l as [ | x l IHl ]; simpl; try tauto.
rewrite andb_true_iff, IHl; firstorder; subst; auto.
Qed.
Fact prim_rec_bool_spec n f : @prim_rec_bool n f = true <-> prim_rec f.
Proof.
induction f as [ x | | | n p | n i f g Hf Hg | n f g Hf Hg | n f Hf ]; simpl; try tauto.
+ rewrite andb_true_iff, fold_right_andb, <- Forall_forall.
rewrite Forall_map, Forall_forall, Hf.
split; intros (? & H); split; auto.
* intros p; apply Hg, H, pos_list_prop.
* intros x Hx; apply Hg, H.
+ rewrite andb_true_iff, Hf, Hg; tauto.
+ split; try tauto; discriminate.
Qed.
Hint Resolve ra_cst_tot ra_zero_tot ra_succ_tot ra_proj_tot ra_rec_tot : core.
Fact prim_rec_tot k f : @prim_rec k f -> total [|f|].
Proof.
induction f as [ x | | | n p | n i f g Hf Hg | n f g Hf Hg | n f Hf ]; intros H; simpl in H; auto.
+ apply ra_comp_tot; try tauto; intros; apply Hg, H.
+ apply ra_rec_tot; tauto.
+ tauto.
Qed.
End prim_rec.
End relational_semantics.
Arguments s_zero v x /.
Arguments s_cst c v x /.
Arguments s_proj {k} p v x /.
Arguments s_succ v x /.
Definition MUREC_PROBLEM := recalg 0.
Definition MUREC_HALTING : MUREC_PROBLEM -> Prop.
Proof. intros f; exact (ex (ra_rel f vec_nil)). Defined.