-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathhessian.py
216 lines (177 loc) · 7.23 KB
/
hessian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from __future__ import absolute_import, division
import autograd.numpy as np
import autograd.numpy.random as npr
from autograd.scipy.misc import logsumexp
import autograd.scipy.signal
from autograd.util import flatten, flatten_func
from autograd import elementwise_grad, grad, hessian
import os, struct, array, pdb, time, gc, argparse
import cPickle as pickle
parser = argparse.ArgumentParser(description='Hessian of MNIST (conv)')
parser.add_argument('-s', '--seed', help='Random seed', type=int, default=42)
parser.add_argument('-o', '--output', help='Save eigenvalues here', type=str, required=True)
parser.add_argument('--hessian_num_batches', help='Hessian batches', type=int, default = 128)
parser.add_argument('--save_hessian', help='Save Hessian', action='store_true')
parser.add_argument('--max_epochs', help='Max. epochs', type=int, default = 50)
args = vars(parser.parse_args())
dtype = np.float32
convolve = autograd.scipy.signal.convolve
opt = {
'batch_size' : 32,
'lr' : 0.001,
'lrd' : 0.98,
'scale' : 1e-1,
'max_epochs' : args['max_epochs'],
'full' : True,
'cnn' : True,
'width': 28
}
opt.update(args)
#print opt
def bin_ndarray(ndarray, new_shape, operation='mean'):
if not operation.lower() in ['sum', 'mean', 'average', 'avg']:
raise ValueError("Operation {} not supported.".format(operation))
if ndarray.ndim != len(new_shape):
raise ValueError("Shape mismatch: {} -> {}".format(ndarray.shape,
new_shape))
compression_pairs = [(d, c//d) for d, c in zip(new_shape,
ndarray.shape)]
flattened = [l for p in compression_pairs for l in p]
ndarray = ndarray.reshape(flattened)
for i in range(len(new_shape)):
if operation.lower() == "sum":
ndarray = ndarray.sum(-1*(i+1))
elif operation.lower() in ["mean", "average", "avg"]:
ndarray = ndarray.mean(-1*(i+1))
return ndarray
def load_mnist(dir, opt, dtype = np.float32):
partial_flatten = lambda x : np.reshape(x, (x.shape[0], np.prod(x.shape[1:])))
one_hot = lambda x, k: np.array(x[:,None] == np.arange(k)[None, :], dtype=int)
def parse_labels(fp):
with open(dir + fp, 'rb') as fh:
_, n = struct.unpack(">II", fh.read(8))
return np.array(array.array("B", fh.read()), dtype=np.uint8)
def parse_images(fp):
with open(dir + fp, 'rb') as fh:
_, n, r, c = struct.unpack(">IIII", fh.read(16))
return np.array(array.array("B", fh.read()), dtype=np.uint8).reshape(n, r, c)
tx = parse_images('/train-images-idx3-ubyte')
ty = parse_labels('/train-labels-idx1-ubyte')
vx = parse_images('/t10k-images-idx3-ubyte')
vy = parse_labels('/t10k-labels-idx1-ubyte')
w = opt['width']
tx = bin_ndarray(tx, (tx.shape[0], w,w))
vx = bin_ndarray(vx, (vx.shape[0], w,w))
tx = tx.reshape(tx.shape[0], 1, w,w)
vx = vx.reshape(vx.shape[0], 1, w,w)
tx /= 255.0
vx /= 255.0
if not opt['cnn']:
tx = partial_flatten(tx)
vx = partial_flatten(vx)
ty = one_hot(ty, 10)
vy = one_hot(vy, 10)
frac = (opt['full'] and 1) or 0.01
tn, vn = int(tx.shape[0]*frac), int(vx.shape[0]*frac)
idx = np.random.permutation(range(tx.shape[0]))[:tn]
tx, ty = tx[idx], ty[idx]
idx = np.random.permutation(range(vx.shape[0]))[:vn]
vx, vy = vx[idx], vy[idx]
ret = (tx.shape[0], tx.astype(dtype), ty.astype(dtype), vx.astype(dtype), vy.astype(dtype))
#pickle.dump(ret, open('mnist.pkl', 'wb'))
return ret
def sgd(grad, init_params, callback=None, num_iters=200, step_size=0.1, mass=0.9):
"""Stochastic gradient descent with momentum.
grad() must have signature grad(x, i), where i is the iteration number."""
flattened_grad, unflatten, x = flatten_func(grad, init_params)
velocity = np.zeros(len(x))
for i in range(num_iters):
g = flattened_grad(x, i)
if callback: callback(unflatten(x), i, unflatten(g))
velocity = mass * velocity - (1.0 - mass) * g
x = x + step_size * velocity
return unflatten(x)
def init_params(scale, rs = npr.RandomState(0)):
w = range(4)
# LeNet: 20-50-500
# 10-20-(320)-128-10
w[0] = (scale*rs.randn(1,10, 5,5).astype(dtype),
scale*rs.randn(1,10,1,1).astype(dtype))
w[1] = (scale*rs.randn(10,20, 5,5).astype(dtype),
scale*rs.randn(1,20,1,1).astype(dtype))
w[2] = (scale*rs.randn(320, 128).astype(dtype),
scale*rs.randn(128).astype(dtype))
w[3] = (scale*rs.randn(128, 10).astype(dtype),
scale*rs.randn(10).astype(dtype))
t1,_ = flatten(w)
print '[size]: ', t1.shape
return w
def maxpool(x, k):
newsz = x.shape[:2]
sz = x.shape[2:]
newsz += (k[0], sz[0]//k[0])
newsz += (k[1], sz[1]//k[1])
r = x.reshape(newsz)
return np.max(np.max(r, axis=2), axis=3)
def predict(p, x):
relu = lambda _x: np.maximum(_x, 0.)
x = relu(convolve(x, p[0][0], axes=([2,3],[2,3]), dot_axes=([1], [0]), mode='valid') + p[0][1])
x = maxpool(x, (2,2))
x = relu(convolve(x, p[1][0], axes=([2,3],[2,3]), dot_axes=([1], [0]), mode='valid') + p[1][1])
x = maxpool(x, (2,2))
x = x.reshape(x.shape[0], -1)
for w, b in p[2:]:
yh = np.dot(x, w) + b
x = relu(yh)
return yh - logsumexp(yh, axis=1, keepdims=True)
def log_posterior(p, x, y):
return np.sum(predict(p, x)*y)
def accuracy(p, x, y):
c = np.argmax(y, axis=1)
ch = np.argmax(predict(p, x), axis=1)
return np.mean(c == ch)*100
def objective(p, i):
idx = i % opt['num_batches']
b = slice(idx*opt['batch_size'], (idx+1)*opt['batch_size'])
if i % 10 == 0:
print i, accuracy(p, tx[b], ty[b])
return -log_posterior(p, tx[b], ty[b])
objective_grad = grad(objective)
n, tx, ty, vx, vy = load_mnist('../proc/raw', opt)
p = init_params(opt['scale'], npr.RandomState(opt['seed']))
opt['num_batches'] = int(np.ceil(n / opt['batch_size']))
s = time.time()
for e in xrange(opt['max_epochs']):
lr = opt['lr']*opt['lrd']**e
def stats(p, i, g):
if i % opt['num_batches'] == 0:
te = accuracy(p, tx, ty)
ve = accuracy(p, vx, vy)
print '{:15}|{:20}|{:20}|'.format(e, te, ve)
if i % 10 == 0:
print ('[%03d][%03d/%03d]')%(e, i%opt['num_batches'], opt['num_batches'])
gc.collect()
p = sgd(objective_grad, p,
step_size = lr, num_iters=opt['num_batches'],
callback=stats)
print '[opt] ', time.time()-s
params = p
print '[flat params] ...'
flat_f, unflatten, flat_params = flatten_func(objective, params)
print '[flat hess] ...'
flat_hess = hessian(flat_f)
h = None
print '[compute hess] ...'
for i in np.random.permutation(np.arange(opt['num_batches']))[:opt['hessian_num_batches']]:
if h is None:
h = flat_hess(flat_params, i)
else:
np.add(h, flat_hess(flat_params, i), h)
print '[progress] ', i, ' dt: ', time.time()-s
gc.collect()
h = h.squeeze()/float(opt['hessian_num_batches']*opt['batch_size'])
print '[hessian] ', time.time() -s
if opt['save_hessian']:
np.save(opt['save_hessian']+'.hes', h)
e = np.linalg.eigvals(h)
np.save(opt['output']+'.eig', e)