-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmodels.lua
100 lines (84 loc) · 2.38 KB
/
models.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
local models = {}
local function mnistconv()
local m = nn:Sequential()
opt.dropout = 0.5
local c1, c2, c3 = 20, 50, 500
m:add(cudnn.SpatialConvolution(1, c1, 5, 5))
m:add(cudnn.ReLU())
m:add(cudnn.SpatialMaxPooling(3,3,3,3))
m:add(cudnn.SpatialBatchNormalization(c1))
m:add(nn.Dropout(opt.dropout))
m:add(cudnn.SpatialConvolution(c1, c2, 5, 5))
m:add(cudnn.ReLU())
m:add(cudnn.SpatialMaxPooling(2,2,2,2))
m:add(cudnn.SpatialBatchNormalization(c2))
m:add(nn.Dropout(opt.dropout))
m:add(nn.View(c2*2*2))
m:add(nn.Linear(c2*2*2, c3))
m:add(cudnn.ReLU())
m:add(nn.Dropout(opt.dropout))
m:add(nn.Linear(c3, 10))
m:add(cudnn.LogSoftMax())
return m
end
local function mnistfc()
local m = nn:Sequential():add(nn.View(784))
local c = 1024
local p = 2
opt.dropout = 0.5
local c1 = c
for i=1,p do
if i == 1 then c1 = 784 else c1 = c end
m:add(nn.Linear(c1, c))
m:add(nn.ReLU(true))
m:add(nn.BatchNormalization(c))
m:add(nn.Dropout(opt.dropout))
end
m:add(nn.Linear(c, 10))
m:add(cudnn.LogSoftMax())
return m
end
local function cifarconv()
local c1, c2 = 96, 192
opt.dropout = 0.5
-- ALL-CNN-C
local function convbn(...)
local arg = {...}
return nn.Sequential()
:add(cudnn.SpatialConvolution(...))
:add(cudnn.SpatialBatchNormalization(arg[2]))
:add(cudnn.ReLU(true))
end
local m = nn.Sequential()
:add(nn.Dropout(0.2))
:add(convbn(3,c1,3,3,1,1,1,1))
:add(convbn(c1,c1,3,3,1,1,1,1))
:add(convbn(c1,c1,3,3,2,2,1,1))
:add(nn.Dropout(opt.dropout))
:add(convbn(c1,c2,3,3,1,1,1,1))
:add(convbn(c2,c2,3,3,1,1,1,1))
:add(convbn(c2,c2,3,3,2,2,1,1))
:add(nn.Dropout(opt.dropout))
:add(convbn(c2,c2,3,3,1,1,1,1))
:add(convbn(c2,c2,3,3,1,1,1,1))
:add(convbn(c2,10,1,1,1,1))
:add(nn.SpatialAveragePooling(8,8))
:add(nn.View(10))
:add(cudnn.LogSoftMax())
return m
end
function models.build()
local m
if opt.model == 'mnistfc' then
m = mnistfc()
elseif opt.model == 'mnistconv' then
m = mnistconv()
elseif opt.model == 'cifarconv' then
m = cifarconv()
else
assert(false, 'Unknown opt.model: ' .. opt.model)
end
local cost = nn.ClassNLLCriterion()
return m:cuda(), cost:cuda()
end
return models