Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Two Group - Allow users to specify Regimes instead of using a predetermined config. #7

Open
IsmailM opened this issue Jan 3, 2024 · 0 comments

Comments

@IsmailM
Copy link
Member

IsmailM commented Jan 3, 2024

See:

flags.DEFINE_integer("regimes_config",
default=8,
help="regime configuration id for mean/stds of regime params")
flags.DEFINE_integer("minimum_duration",

###############################################################################
## PARAMETERS
###############################################################################
## The following parameters are fixed/assumed to be known, i.e.
## they are not estimated by the parameter-estimation scheme.
## They are also the same for both the case and control groups:
if FLAGS.regimes_config == 0:
# regime specific mean parameters beta laws
mu_true = tf.Variable([0.99, 0.01, 0.80, 0.20, 0.50, 0.50],
dtype = dtype, name = 'mu_true')
# regime specific standard-deviation parameters beta laws
sigma_true = tf.Variable(np.array([0.05, 0.05, 0.20, 0.20, 0.20, 1 / np.sqrt(12)]),
dtype = dtype, name = 'sigma_true')
elif FLAGS.regimes_config == 1:
# regime specific mean parameters beta laws
mu_true = tf.Variable([0.95, 0.05, 0.85, 0.15, 0.50, 0.50],
dtype = dtype, name = 'mu_true')
# regime specific standard-deviation parameters beta laws
sigma_true = tf.Variable(np.array([0.10, 0.10, 0.08, 0.08, 0.20, 1 / np.sqrt(12)]),
dtype = dtype, name = 'sigma_true')
elif FLAGS.regimes_config == 2:
# regime specific mean parameters beta laws
mu_true = tf.Variable([0.95, 0.05, 0.85, 0.15, 0.50, 0.50],
dtype = dtype, name = 'mu_true')
# regime specific standard-deviation parameters beta laws
sigma_true = tf.Variable(np.array([0.10, 0.10, 0.04, 0.04, 0.20, 1 / np.sqrt(12)]),
dtype = dtype, name = 'sigma_true')
elif FLAGS.regimes_config == 3:
# regime specific mean parameters beta laws
mu_true = tf.Variable([0.95, 0.05, 0.85, 0.15, 0.50, 0.50],
dtype = dtype, name = 'mu_true')
# regime specific standard-deviation parameters beta laws
sigma_true = tf.Variable(np.array([0.15, 0.15, 0.08, 0.08, 0.20, 1 / np.sqrt(12)]),
dtype = dtype, name = 'sigma_true')
elif FLAGS.regimes_config == 4:
# regime specific mean parameters beta laws
mu_true = tf.Variable([0.95, 0.05, 0.85, 0.15, 0.50, 0.50],
dtype = dtype, name = 'mu_true')
# regime specific standard-deviation parameters beta laws
sigma_true = tf.Variable(np.array([0.15, 0.15, 0.04, 0.04, 0.20, 1/np.sqrt(12)]),
dtype = dtype, name = 'sigma_true')
elif FLAGS.regimes_config == 5:
# regime specific mean parameters beta laws
mu_true = tf.Variable([0.99, 0.01, 0.80, 0.20, 0.50, 0.50],
dtype = dtype, name = 'mu_true')
# regime specific standard-deviation parameters beta laws
sigma_true = tf.Variable(np.array([0.05, 0.05, 0.15, 0.15, 0.20, 1 / np.sqrt(12)]),
dtype = dtype, name = 'sigma_true')
elif FLAGS.regimes_config == 6:
# regime specific mean parameters beta laws
mu_true = tf.Variable([0.95, 0.05, 0.85, 0.15, 0.50, 0.50],
dtype = dtype, name = 'mu_true')
# regime specific standard-deviation parameters beta laws
sigma_true = tf.Variable(np.array([0.05, 0.05, 0.05, 0.05, 0.1, 1 / np.sqrt(12)]),
dtype = dtype, name = 'sigma_true')
elif FLAGS.regimes_config == 7:
# regime specific mean parameters beta laws
mu_true = tf.Variable([0.99, 0.01, 0.80, 0.20, 0.50, 0.50, 0.50],
dtype = dtype, name = 'mu_true')
# regime specific standard-deviation parameters beta laws
sigma_true = tf.Variable(np.array([0.05, 0.05, 0.15, 0.15, 0.20, 1 / np.sqrt(12), 1 / np.sqrt(6)]),
dtype = dtype, name = 'sigma_true')
elif FLAGS.regimes_config == 8:
# regime specific mean parameters beta laws
mu_true = tf.Variable([0.95, 0.05, 0.80, 0.20, 0.50, 0.50],
dtype = dtype, name = 'mu_true')
# regime specific standard-deviation parameters beta laws
sigma_true = tf.Variable(np.array([0.05, 0.05, 0.1, 0.1, 0.1, 1 / np.sqrt(12)]),
dtype = dtype, name = 'sigma_true')
elif FLAGS.regimes_config == 9:
# regime specific mean parameters beta laws
mu_true = tf.Variable([0.95, 0.05, 0.75, 0.25, 0.50, 0.50],
dtype = dtype, name = 'mu_true')
# regime specific standard-deviation parameters beta laws
sigma_true = tf.Variable(np.array([0.1, 0.1, 0.1, 0.1, 0.1, 1 / np.sqrt(12)]),
dtype = dtype, name = 'sigma_true')
elif FLAGS.regimes_config == 10:
# regime specific mean parameters beta laws
mu_true = tf.Variable([0.95, 0.05, 0.80, 0.20, 0.50],
dtype = dtype, name = 'mu_true')
# regime specific standard-deviation parameters beta laws
sigma_true = tf.Variable(np.array([0.05, 0.05, 0.1, 0.1, 0.1]),
dtype = dtype, name = 'sigma_true')
n_methylation_regimes = mu_true.shape[0]

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant