-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathmain_lapwgan.py
224 lines (177 loc) · 8.51 KB
/
main_lapwgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse, os
import pdb
import torch
import math, random
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from lapsrn_wgan import _netG, _netD, L1_Charbonnier_loss
from dataset import DatasetFromHdf5
from torchvision import models, transforms
import torch.utils.model_zoo as model_zoo
# Training settings
parser = argparse.ArgumentParser(description="PyTorch LapSRN WGAN")
parser.add_argument("--batchSize", type=int, default=32, help="training batch size")
parser.add_argument("--nEpochs", type=int, default=400, help="number of epochs to train for")
parser.add_argument('--lrG', type=float, default=1e-4, help='Learning Rate. Default=1e-4')
parser.add_argument('--lrD', type=float, default=1e-4, help='Learning Rate. Default=1e-4')
parser.add_argument("--step", type=int, default=50, help="Sets the learning rate to the initial LR decayed by momentum every n epochs, Default: n=10")
parser.add_argument("--cuda", action="store_true", help="Use cuda?")
parser.add_argument("--resume", default="", type=str, help="Path to checkpoint (default: none)")
parser.add_argument("--start-epoch", default=1, type=int, help="Manual epoch number (useful on restarts)")
parser.add_argument("--threads", type=int, default=1, help="Number of threads for data loader to use, Default: 1")
parser.add_argument("--momentum", default=0.9, type=float, help="Momentum, Default: 0.9")
parser.add_argument("--weight-decay", "--wd", default=1e-4, type=float, help="weight decay, Default: 1e-4")
parser.add_argument("--pretrained", default="", type=str, help="path to pretrained model (default: none)")
parser.add_argument('--clamp_lower', type=float, default=-0.01)
parser.add_argument('--clamp_upper', type=float, default=0.01)
def main():
global opt, model
opt = parser.parse_args()
print(opt)
cuda = opt.cuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
opt.seed = random.randint(1, 10000)
print("Random Seed: ", opt.seed)
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
cudnn.benchmark = True
print("===> Loading datasets")
train_set = DatasetFromHdf5("data/lap_pry_x4_small.h5")
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
print('===> Building generator model')
netG = _netG()
print('===> Building discriminator model')
netD = _netD()
print('===> Loading VGG model')
model_urls = {
"vgg19": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth"
}
netVGG = models.vgg19()
netVGG.load_state_dict(model_zoo.load_url(model_urls['vgg19']))
weight = torch.FloatTensor(64,1,3,3)
parameters = list(netVGG.parameters())
for i in range(64):
weight[i,:,:,:] = parameters[0].data[i].mean(0)
bias = parameters[1].data
class _content_model(nn.Module):
def __init__(self):
super(_content_model, self).__init__()
self.conv = conv2d = nn.Conv2d(1, 64, kernel_size=3, padding=1)
self.feature = nn.Sequential(*list(netVGG.features.children())[1:-1])
self._initialize_weights()
def forward(self, x):
out = self.conv(x)
out = self.feature(out)
return out
def _initialize_weights(self):
self.conv.weight.data.copy_(weight)
self.conv.bias.data.copy_(bias)
netContent = _content_model()
print('===> Building Loss')
criterion = L1_Charbonnier_loss()
print("===> Setting GPU")
if cuda:
netG = netG.cuda()
netD = netD.cuda()
netContent = netContent.cuda()
criterion = criterion.cuda()
# optionally resume from a checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
opt.start_epoch = checkpoint["epoch"] + 1
netG.load_state_dict(checkpoint["model"].state_dict())
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
# optionally copy weights from a checkpoint
if opt.pretrained:
if os.path.isfile(opt.pretrained):
print("=> loading model '{}'".format(opt.pretrained))
weights = torch.load(opt.pretrained)
netG.load_state_dict(weights['model'].state_dict())
else:
print("=> no model found at '{}'".format(opt.pretrained))
print("===> Setting Optimizer")
optimizerD = optim.RMSprop(netD.parameters(), lr = opt.lrD)
optimizerG = optim.RMSprop(netG.parameters(), lr = opt.lrG)
print("===> Training")
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
train(training_data_loader, optimizerG, optimizerD, netG, netD, netContent, criterion, epoch)
save_checkpoint(netG, epoch)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 10 epochs"""
lr = opt.lr * (0.1 ** (epoch // opt.step))
return lr
def train(training_data_loader, optimizerG, optimizerD, netG, netD, netContent, criterion, epoch):
netG.train()
netD.train()
one = torch.FloatTensor([1.])
mone = one * -1
content_weight = torch.FloatTensor([1.])
adversarial_weight = torch.FloatTensor([1.])
for iteration, batch in enumerate(training_data_loader, 1):
input, label_x2, label_x4 = Variable(batch[0]), Variable(batch[1], requires_grad=False), Variable(batch[2], requires_grad=False)
if opt.cuda:
input = input.cuda()
label_x2 = label_x2.cuda()
label_x4 = label_x4.cuda()
one, mone, content_weight, adversarial_weight = one.cuda(), mone.cuda(), content_weight.cuda(), adversarial_weight.cuda()
############################
# (1) Update D network: loss = D(x)) - D(G(z))
###########################
# train with real
errD_real = netD(label_x4)
errD_real.backward(one, retain_graph=True)
# train with fake
input_G = Variable(input.data, volatile = True)
fake_x4 = Variable(netG(input_G)[1].data)
fake_D = fake_x4
errD_fake = netD(fake_D)
errD_fake.backward(mone)
errD = errD_real - errD_fake
optimizerD.step()
for p in netD.parameters(): # reset requires_grad
p.data.clamp_(opt.clamp_lower, opt.clamp_upper)
netD.zero_grad()
netG.zero_grad()
netContent.zero_grad()
############################
# (2) Update G network: loss = D(G(z))
###########################
fake_D_x2, fake_D_x4 = netG(input)
content_fake_x2 = netContent(fake_D_x2)
content_real_x2 = netContent(label_x2)
content_real_x2 = Variable(content_real_x2.data)
content_loss_x2 = criterion(content_fake_x2, content_real_x2)
content_loss_x2.backward(content_weight, retain_graph=True)
content_fake_x4 = netContent(fake_D_x4)
content_real_x4 = netContent(label_x4)
content_real_x4 = Variable(content_real_x4.data)
content_loss_x4 = criterion(content_fake_x4, content_real_x4)
content_loss_x4.backward(content_weight, retain_graph=True)
content_loss = content_loss_x2 + content_loss_x4
adversarial_loss = netD(fake_D_x4)
adversarial_loss.backward(adversarial_weight)
optimizerG.step()
netD.zero_grad()
netG.zero_grad()
netContent.zero_grad()
if iteration%10 == 0:
print("===> Epoch[{}]({}/{}): LossD: {:.10f} [{:.10f} - {:.10f}] LossG: [{:.10f} + {:.10f}]".format(epoch, iteration, len(training_data_loader),
errD.data[0], errD_real.data[0], errD_fake.data[0], adversarial_loss.data[0], content_loss.data[0]))
def save_checkpoint(model, epoch):
model_folder = "checkpoint/"
model_out_path = model_folder + "lapwgan_model_epoch_{}.pth".format(epoch)
state = {"epoch": epoch ,"model": model}
if not os.path.exists(model_folder):
os.makedirs(model_folder)
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
if __name__ == "__main__":
main()