-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
961 lines (847 loc) · 32.1 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
#include<errno.h> //preprocessor macro used for error indication
#include<fcntl.h> //for open()
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<string.h>
#include<stdint.h>
#include <sys/types.h>
#include<unistd.h> //for open()
typedef struct
{
char* buffer;
size_t buffer_length; //size_t to store a size in bytes
ssize_t input_length;
/* signed size_t,to store a size in bytes or negative value(-1) error
, not included in standard library and isn't portable*/
} InputBuffer;
/*instead of using exceptions (C doesn't support exception handling)
like how we would use in say Python,
we simply use enum result codes
*/
//meta commands: Non-SQL commands like .exit (all start with a dot)
//we handle these commands in a different function
//The two enums indicate success or failure
typedef enum{
META_COMMAND_SUCCESS,
META_COMMAND_UNRECOGNIZED_COMMAND
} MetaCommandResult;
typedef enum{
PREPARE_SUCCESS,
PREPARE_UNRECOGNIZED_STATEMENT,
PREPARE_SYNTAX_ERROR,
PREPARE_STRING_TOO_LONG,
PREPARE_NEGATIVE_ID
} PrepareResult;
//just two values for now
typedef enum{
STATEMENT_INSERT,
STATEMENT_SELECT
} StatementType;
typedef enum{
EXECUTE_SUCCESS,
EXECUTE_TABLE_FULL,
EXECUTE_DUPLICATE_KEY
}ExecuteResult;
#define COLUMN_USERNAME_SIZE 32
#define COLUMN_EMAIL_SIZE 255
typedef struct {
uint32_t id;
char username[COLUMN_USERNAME_SIZE+1];
char email[COLUMN_EMAIL_SIZE+1];
} Row;
// (Struct*)0 is a null pointer but does not get dereferenced by
// -> cuz here sizeof simply returns the amount of bytes allocated by definition of the data type ( I hope this is right)
#define size_of_attribute(Struct,Attribute) sizeof(((Struct*)0)->Attribute)
//int32_t = fixed size of 32 bits unlike int (which can have any size>=16 bits)
const uint32_t ID_SIZE = size_of_attribute(Row,id); // 4 bytes
const uint32_t USERNAME_SIZE = size_of_attribute(Row,username); // 33 bytes
const uint32_t EMAIL_SIZE = size_of_attribute(Row,email); //256 bytes
const uint32_t ID_OFFSET = 0;
const uint32_t USERNAME_OFFSET = ID_OFFSET+ID_SIZE;
const uint32_t EMAIL_OFFSET = USERNAME_OFFSET + USERNAME_SIZE;
const uint32_t ROW_SIZE = ID_SIZE + USERNAME_SIZE + EMAIL_SIZE; //293 bytes
typedef struct{
StatementType type;
Row row_to_insert; //only used by insert statement
} Statement;
//Row to memory
void serialize_row(Row* source, void* destination){
memcpy(destination+ID_OFFSET, &(source->id),ID_SIZE);
memcpy(destination+USERNAME_OFFSET,&(source->username),USERNAME_SIZE);
memcpy(destination+EMAIL_OFFSET,&(source->email),EMAIL_SIZE);
}
//Memory to row
void deserialize_row(void* source, Row* destination){
memcpy(&(destination->id),source+ID_OFFSET,ID_SIZE);
memcpy(&(destination->username),source+USERNAME_OFFSET,USERNAME_SIZE);
memcpy(&(destination->email),source+EMAIL_OFFSET,EMAIL_SIZE);
}
const uint32_t PAGE_SIZE = 4096; //4Kbs same as a page used in most virtual memory systems in most comp. architectures.
#define TABLE_MAX_PAGES 100
// const uint32_t ROWS_PER_PAGE = PAGE_SIZE/ROW_SIZE; //4096/291 = 14
// const uint32_t TABLE_MAX_ROWS = ROWS_PER_PAGE * TABLE_MAX_PAGES;
//Leaf nodes and internal nodes have different layouts.
//To keep track of node type
//Each node corresponds to one page
typedef enum{
NODE_INTERNAL,
NODE_LEAF
}NodeType;
//Every node is going to take up exactly one page
//Common Node header format
/* Metadata needed to be stored in a header at the beginning of
the page: what type of node it is, whether root node or not,
pointer to its parent (3 total)*/
//sizeof(uint8_t) indicates 1 byte of memory
const uint32_t NODE_TYPE_SIZE = sizeof(uint8_t);
//offset 0 indicates node type field starts at the beginning
const uint32_t NODE_TYPE_OFFSET = 0;
const uint32_t IS_ROOT_SIZE = sizeof(uint8_t);
const uint32_t IS_ROOT_OFFSET = NODE_TYPE_SIZE;
const uint32_t PARENT_POINTER_SIZE = sizeof(uint32_t);
const uint32_t PARENT_POINTER_OFFSET = IS_ROOT_OFFSET+IS_ROOT_SIZE;
const uint8_t COMMON_NODE_HEADER_SIZE =
NODE_TYPE_SIZE + IS_ROOT_SIZE + PARENT_POINTER_SIZE; //or = PARENT_POINTER_OFFSET + PARENT_POINTER_SIZE
/*Leaf Node Format*/
/* In addition to the common header fields,
LEAF nodes need to store how many "cells" they contain.
A cell = key:value pair*/
const uint32_t LEAF_NODE_NUM_CELLS_SIZE = sizeof(uint32_t);
const uint32_t LEAF_NODE_NUM_CELLS_OFFSET = COMMON_NODE_HEADER_SIZE;
const uint32_t LEAF_NODE_NEXT_LEAF_SIZE = sizeof(uint32_t);
const uint32_t LEAF_NODE_NEXT_LEAF_OFFSET = LEAF_NODE_NUM_CELLS_OFFSET + LEAF_NODE_NUM_CELLS_SIZE;
const uint32_t LEAF_NODE_HEADER_SIZE =
COMMON_NODE_HEADER_SIZE + LEAF_NODE_NUM_CELLS_SIZE + LEAF_NODE_NEXT_LEAF_SIZE;
/*Leaf Node Body Layout*/
/*The body of a leaf node = array of cells*/
/* Each key is followed by a value*/
/*value = serialized row*/
const uint32_t LEAF_NODE_KEY_SIZE = sizeof(uint32_t);
const uint32_t LEAF_NODE_KEY_OFFSET = 0;
const uint32_t LEAF_NODE_VALUE_SIZE = ROW_SIZE;
const uint32_t LEAF_NODE_VALUE_OFFSET =
LEAF_NODE_KEY_OFFSET + LEAF_NODE_KEY_SIZE;
const uint32_t LEAF_NODE_CELL_SIZE = LEAF_NODE_KEY_SIZE+LEAF_NODE_VALUE_SIZE;
const uint32_t LEAF_NODE_SPACE_FOR_CELLS = PAGE_SIZE - LEAF_NODE_HEADER_SIZE;
const uint32_t LEAF_NODE_MAX_CELLS =
LEAF_NODE_SPACE_FOR_CELLS / LEAF_NODE_CELL_SIZE;
bool is_node_root(void* node){
uint8_t value = *((uint8_t*)node+IS_ROOT_OFFSET);
return (bool)value;
}
void set_node_root(void* node, bool is_root){
uint8_t value = is_root;
*((uint8_t*)(node + IS_ROOT_OFFSET)) = value;
}
/*Accessing Leaf Node Fields*/
/* These methods return a pointer in question,
so they can be used as both a getter and a setter*/
/*The code to access keys, values and metadata all involve
pointer arithmetic using the constants we just defined*/
uint32_t* leaf_node_num_cells(void* node){
return node+LEAF_NODE_NUM_CELLS_OFFSET;
}
void* leaf_node_cell(void* node, uint32_t cell_num){
return node+LEAF_NODE_HEADER_SIZE + cell_num*LEAF_NODE_CELL_SIZE;
}
uint32_t* leaf_node_key(void* node, uint32_t cell_num){
return leaf_node_cell(node, cell_num);
}
void* leaf_node_value(void* node, uint32_t cell_num){
return leaf_node_cell(node,cell_num)+LEAF_NODE_KEY_SIZE;
}
uint32_t* leaf_node_next_leaf(void* node){
return node+LEAF_NODE_NEXT_LEAF_OFFSET;
}
/*cast to uint8_t to ensure it's serialized as a single byte*/
NodeType get_node_type(void* node){
uint8_t value = *((uint8_t*)(node + NODE_TYPE_OFFSET));
return (NodeType)value;
}
void set_node_type(void* node, NodeType type){
uint8_t value = type;
*((uint8_t*)(node+NODE_TYPE_OFFSET)) = value;
}
void initialize_leaf_node(void* node){
set_node_type(node,NODE_LEAF);
set_node_root(node,false);
*leaf_node_num_cells(node) = 0;
*leaf_node_next_leaf(node) = 0;
}
/*
Internal Node Header Layout
*/
const uint32_t INTERNAL_NODE_NUM_KEYS_SIZE = sizeof(uint32_t); //4
const uint32_t INTERNAL_NODE_NUM_KEYS_OFFSET = COMMON_NODE_HEADER_SIZE;
const uint32_t INTERNAL_NODE_RIGHT_CHILD_SIZE = sizeof(uint32_t); // 4
const uint32_t INTERNAL_NODE_RIGHT_CHILD_OFFSET =
INTERNAL_NODE_NUM_KEYS_OFFSET+INTERNAL_NODE_NUM_KEYS_SIZE;
const uint32_t INTERNAL_NODE_HEADER_SIZE = COMMON_NODE_HEADER_SIZE+
INTERNAL_NODE_NUM_KEYS_SIZE+
INTERNAL_NODE_RIGHT_CHILD_SIZE;
/* Internal Node Body Layout*/
const uint32_t INTERNAL_NODE_NUM_KEY_SIZE = sizeof(uint32_t); //4
const uint32_t INTERNAL_NODE_CHILD_SIZE = sizeof(uint32_t); //4
const uint32_t INTERNAL_NODE_CELL_SIZE =
//key+child pointer
INTERNAL_NODE_CHILD_SIZE + INTERNAL_NODE_NUM_KEY_SIZE;
uint32_t* internal_node_num_keys(void* node){
return node+INTERNAL_NODE_NUM_KEYS_OFFSET;
}
uint32_t* internal_node_right_child(void* node){
return node+INTERNAL_NODE_RIGHT_CHILD_OFFSET;
}
uint32_t* internal_node_cell(void* node, uint32_t cell_num){
return node+INTERNAL_NODE_HEADER_SIZE + cell_num*INTERNAL_NODE_CELL_SIZE;
}
uint32_t* internal_node_child(void* node, uint32_t child_num){
uint32_t num_keys = *internal_node_num_keys(node);
if(child_num > num_keys){
printf("Tried to access child_num %d > num_keys %d",child_num,num_keys);
exit(EXIT_FAILURE);
}else if(child_num == num_keys){
return internal_node_right_child(node);
}else{
return internal_node_cell(node,child_num);
}
}
uint32_t* internal_node_key(void* node, uint32_t key_num){
return internal_node_cell(node, key_num) + INTERNAL_NODE_CHILD_SIZE;
}
void initialize_internal_node(void* node){
set_node_type(node, NODE_INTERNAL);
set_node_root(node, false);
*internal_node_num_keys(node) = 0;
}
/*Internal node- max key = right key
Leaf node- max key = at the maximum index*/
uint32_t get_node_max_key(void* node){
switch(get_node_type(node)){
case NODE_INTERNAL:
return *internal_node_key(node,*internal_node_num_keys(node)-1);
case NODE_LEAF:
return *leaf_node_key(node,*leaf_node_num_cells(node)-1);
}
}
//The Pager struct: accesses file and page cache
typedef struct{
int file_descriptor;
uint32_t file_length;
uint32_t num_pages;
void* pages[TABLE_MAX_PAGES];
}Pager;
typedef struct{
Pager* pager;
uint32_t root_page_num; //to keep track of the btree
}Table;
typedef struct{
Table* table;
uint32_t page_num;
uint32_t cell_num;
bool end_of_table; //indicates a position one past the last element.
}Cursor;
void* get_page(Pager* pager, uint32_t page_num);
/*Return the position of the given key.
If they key is not present, return the positino
where it should be inserted.
*/
Cursor* leaf_node_find(Table* table, uint32_t page_num, uint32_t key){
void* node = get_page(table->pager,page_num);
uint32_t num_cells = *leaf_node_num_cells(node);
Cursor* cursor = malloc(sizeof(Cursor));
cursor->table = table;
cursor->page_num = page_num;
//Binary search
uint32_t min_index = 0;
uint32_t one_past_max_index = num_cells;
while(one_past_max_index!=min_index){
uint32_t index =(min_index + one_past_max_index)/2;
uint32_t key_at_index = *leaf_node_key(node,index);
if(key == key_at_index){
cursor->cell_num = index;
return cursor;
}else if(key_at_index>key){
one_past_max_index = index;
}else{
min_index = index+1;
}
}
cursor->cell_num = min_index;
return cursor;
}
Cursor* internal_node_find(Table* table, uint32_t page_num, uint32_t key){
void* node = get_page(table->pager, page_num);
uint32_t num_keys = *internal_node_num_keys(node);
/*Binary search to find index of child to search*/
uint32_t min_index = 0;
uint32_t max_index = num_keys; //total pointers = no.of keys+1
while(min_index!=max_index){
uint32_t index = (min_index+max_index)/2;
uint32_t key_to_right = *internal_node_key(node,index);
if(key_to_right >=key){
max_index = index;
}else{
min_index = index+1;
}
}
uint32_t child_num = *internal_node_child(node,min_index);
void* child = get_page(table->pager, child_num);
switch (get_node_type(child))
{
case NODE_LEAF:
return leaf_node_find(table,child_num,key);
case NODE_INTERNAL:
return internal_node_find(table,child_num,key);
}
}
Cursor* table_find(Table* table, uint32_t key){
uint32_t root_page_num = table->root_page_num;
void* root_node = get_page(table->pager, root_page_num);
if(get_node_type(root_node)==NODE_LEAF){
return leaf_node_find(table,root_page_num,key);
}else{
// printf("%d"get_page,get_node_type(root_node));
// printf("Need to implement searching an internal node\n");
// exit(EXIT_FAILURE);
return internal_node_find(table,root_page_num,key);
}
}
Cursor* table_start(Table* table){
// Cursor* cursor = malloc(sizeof(Cursor));
// cursor->table = table;
// // cursor->row_num = 0;
// // cursor->end_of_table = (table->num_rows==0); //if table empty: true
// cursor->page_num = table->root_page_num;
// cursor->cell_num = 0;
// void* root_node = get_page(table->pager, table->root_page_num);
// uint32_t num_cells = *leaf_node_num_cells(root_node);
// cursor->end_of_table = (num_cells == 0);
// return cursor;
Cursor* cursor = table_find(table,0);
//Find the lowest key
//even if 0 doesnt exist, it would return the lowest index
}
// Cursor* table_end(Table* table){
// Cursor* cursor = malloc(sizeof(Cursor));
// cursor->table = table;
// // cursor->row_num = table->num_rows;
// cursor->page_num = table->root_page_num;
// void* root_node = get_page(table->pager, table->root_page_num);
// uint32_t num_cells = *leaf_node_num_cells(root_node);
// cursor->cell_num = num_cells;
// cursor->end_of_table = true;
// return cursor;
// }
void* cursor_value(Cursor* cursor){
uint32_t page_num = cursor->page_num;
void* page = get_page(cursor->table->pager,page_num);
// uint32_t row_offset = row_num % ROWS_PER_PAGE;
// uint32_t byte_offset = row_offset * ROW_SIZE;
// return page + byte_offset;
return leaf_node_value(page,cursor->cell_num);
}
void cursor_advance(Cursor* cursor){
// cursor->row_num += 1;
// if(cursor->row_num >= cursor->table->num_rows){
uint32_t page_num = cursor->page_num;
void* node = get_page(cursor->table->pager, page_num);
cursor->cell_num += 1;
if(cursor->cell_num >= (*leaf_node_num_cells(node))){
// cursor->end_of_table = true;
/*Advance to next leaf node*/
uint32_t next_page_num = *leaf_node_next_leaf(node);
if(next_page_num==0){
/*right most leaf node*/
cursor->end_of_table = true;
}else{
cursor->page_num = next_page_num;
cursor->cell_num = 0;//0th cell
}
}
}
/*new page retrieved from the end of database file*/
uint32_t get_unused_page_num(Pager* pager){
return pager->num_pages;
}
const uint32_t LEAF_NODE_RIGHT_SPLIT_COUNT = (LEAF_NODE_MAX_CELLS+1)/2;
const uint32_t LEAF_NODE_LEFT_SPLIT_COUNT =
(LEAF_NODE_MAX_CELLS+1)-LEAF_NODE_RIGHT_SPLIT_COUNT;
/* In SQLite:
Let N be the root node. Allocate two nodes, L and R.
Move lower half of N into L and upper half of N into R.
Now N is empty. ADD <L,K,R> where K is the max key in L.
Page N remains the root.*/
void create_new_root(Table* table,uint32_t right_child_page_num){
/*
Handle splitting the root.
Old root copied to new page, becomes left child.
Address of right child passed in.
Re-initiliaze root page to contain the new root node.
New root node points to two children.*/
void* root = get_page(table->pager,table->root_page_num); //old root (now left child)
void* right_child = get_page(table->pager,right_child_page_num);
uint32_t left_child_page_num = get_unused_page_num(table->pager);
void* left_child = get_page(table->pager, left_child_page_num);
/*copy root data to left_child*/
memcpy(left_child,root,PAGE_SIZE);
set_node_root(left_child,false);
/*Root node is a new internal node with one key and two children*/
initialize_internal_node(root);
set_node_root(root,true);
*internal_node_num_keys(root) = 1;
*internal_node_child(root,0) = left_child_page_num;
uint32_t left_child_max_key = get_node_max_key(left_child);
*internal_node_key(root,0) = left_child_max_key;
*internal_node_right_child(root) = right_child_page_num;
}
void leaf_node_split_and_insert(Cursor* cursor, uint32_t key, Row* value){
/*Create a new node and move half the cells over
Insert the new value in one of the two nodes
Update parent or create a parent*/
void* old_node = get_page(cursor->table->pager,cursor->page_num);
uint32_t new_page_num = get_unused_page_num(cursor->table->pager);
void* new_node = get_page(cursor->table->pager,new_page_num);
initialize_leaf_node(new_node);
*leaf_node_next_leaf(new_node) = *leaf_node_next_leaf(old_node);
*leaf_node_next_leaf(old_node) = new_page_num;
/*All existing keys plus new key should be divided evenly
b/w old(left) and new(right) nodes.
Starting from the right, move each key to correct
position.*/
/* don't use uint32_t here */
for(int32_t i = LEAF_NODE_MAX_CELLS; i>=0;i--){
// printf("%d - yayaya ", i);
if(i == -1){
// printf("\n\nNOOOOOOOO\n\n");
}
void* destination_node;
if(i>=LEAF_NODE_LEFT_SPLIT_COUNT){
destination_node = new_node;
}else{
destination_node = old_node;
}
uint32_t index_within_node = i%LEAF_NODE_LEFT_SPLIT_COUNT;
void* destination = leaf_node_cell(destination_node,index_within_node);
if(i == cursor->cell_num){
//the new cell
serialize_row(value,leaf_node_value(destination_node, index_within_node));
}else if(i>cursor->cell_num){
//the cells that come after the new cell
memcpy(destination,leaf_node_cell(old_node,i-1),LEAF_NODE_CELL_SIZE);
}else{
//the cells before the new cell
memcpy(destination,leaf_node_cell(old_node,i),LEAF_NODE_CELL_SIZE);
}
}
/* Update cell count on both leaf node*/
*(leaf_node_num_cells(old_node)) = LEAF_NODE_LEFT_SPLIT_COUNT;
*(leaf_node_num_cells(new_node)) = LEAF_NODE_RIGHT_SPLIT_COUNT;
/*Create Parent*/
if(is_node_root(old_node)){
return create_new_root(cursor->table,new_page_num);
}else{
printf("Need to implement updating parent after split\n");
exit(EXIT_FAILURE);
}
}
void leaf_node_insert(Cursor* cursor, uint32_t key, Row* value){
void* node = get_page(cursor->table->pager,cursor->page_num);
uint32_t num_cells = *leaf_node_num_cells(node);
if(num_cells>=LEAF_NODE_MAX_CELLS){
//Node full
// printf("Need to implement splitting of a leaf node.\n");
// exit(EXIT_FAILURE);
leaf_node_split_and_insert(cursor,key,value);
return;
}
if(cursor->cell_num < num_cells){
//Insert row at pos cell_num
//shift all the following cells to the right
for(uint32_t i = num_cells; i>cursor->cell_num; i--){
memcpy(leaf_node_cell(node,i),leaf_node_cell(node,i-1),LEAF_NODE_CELL_SIZE);
}
}
//now insert into cell_num
*(leaf_node_num_cells(node)) += 1;
*(leaf_node_key(node,cursor->cell_num)) = key;
serialize_row(value,leaf_node_value(node,cursor->cell_num));
}
void indent(uint32_t level){
for(uint32_t i = 0; i<level; i++){
printf(" ");
}
}
void print_tree(Pager* pager, uint32_t page_num, uint32_t indentation_level){
void* node = get_page(pager, page_num);
uint32_t num_keys, child;
switch(get_node_type(node)){
case(NODE_LEAF):
num_keys = *leaf_node_num_cells(node);
indent(indentation_level);
printf("- leaf (size %d)\n", num_keys);
for(uint32_t i = 0; i<num_keys; i++){
indent(indentation_level+1);
printf("- %d\n",*leaf_node_key(node,i));
}
break;
case(NODE_INTERNAL):
num_keys = *internal_node_num_keys(node);
indent(indentation_level);
printf("- internal (size %d)\n", num_keys);
for(uint32_t i = 0; i<num_keys; i++){
child = *internal_node_child(node, i);
print_tree(pager,child,indentation_level+1);
indent(indentation_level+1);
printf("- key %d\n", *internal_node_key(node,i));
}
child = *internal_node_right_child(node);
print_tree(pager,child,indentation_level+1);
break;
}
}
void print_prompt(){ printf("db > ");}
void print_row(Row* row){
printf("(%d, %s, %s)\n",row->id, row->username, row->email);
}
void print_constants(){
printf("ROW_SIZE: %d\n",ROW_SIZE);
printf("COMMON_NODE_HEADER_SIZE: %d\n", COMMON_NODE_HEADER_SIZE);
printf("LEAF_NODE_HEADER_SIZE: %d\n",LEAF_NODE_HEADER_SIZE);
printf("LEAF_NODE_CELL_SIZE: %d\n",LEAF_NODE_CELL_SIZE);
printf("LEAF_NODE_SPACE_FOR_CELLS: %d\n", LEAF_NODE_SPACE_FOR_CELLS);
printf("LEAF_NODE_MAX_CELLS: %d\n",LEAF_NODE_MAX_CELLS);
}
void print_leaf_node(void* node){
uint32_t num_cells = *leaf_node_num_cells(node);
printf("leaf (size %d)\n",num_cells);
for (uint32_t i = 0; i<num_cells; i++){
uint32_t key = *leaf_node_key(node,i);
printf(" - %d : %d\n",i,key);
}
}
ExecuteResult execute_insert(Statement* statement,Table* table){
// if(table->num_rows >= TABLE_MAX_ROWS){
// return EXECUTE_TABLE_FULL;
// }
void* node = get_page(table->pager,table->root_page_num);
uint32_t num_cells = *(leaf_node_num_cells(node));
Row* row_to_insert = &(statement->row_to_insert);
// Cursor* cursor = table_end(table);
uint32_t key_to_insert = row_to_insert->id;
Cursor* cursor = table_find(table,key_to_insert);
//check if key already exists
if(cursor->cell_num < num_cells){
uint32_t key_at_index = *leaf_node_key(node,cursor->cell_num);
if(key_at_index == key_to_insert){
return EXECUTE_DUPLICATE_KEY;
}
}
// serialize_row(row_to_insert, cursor_value(cursor));
// table->num_rows += 1;
leaf_node_insert(cursor,row_to_insert->id,row_to_insert);
free(cursor);
return EXECUTE_SUCCESS;
}
ExecuteResult execute_select(Statement* statement, Table* table){
Row row;
Cursor* cursor = table_start(table);
// for(uint32_t i = 0; i<table->num_rows; i++){
// deserialize_row(row_slot(table,i),&row);
while(!(cursor->end_of_table)){
deserialize_row(cursor_value(cursor),&row);
print_row(&row);
cursor_advance(cursor);
}
free(cursor);
return EXECUTE_SUCCESS;
}
void db_close(Table* table);
MetaCommandResult do_meta_command(InputBuffer* input_buffer,Table* table){
if (!strcmp(input_buffer->buffer,".exit")){
// printf("freed\n");
// free(table);
db_close(table);
exit(EXIT_SUCCESS);
}else if(!strcmp(input_buffer->buffer,".btree")){
printf("Tree:\n");
// print_leaf_node(get_page(table->pager,0));
print_tree(table->pager,0,0);
return META_COMMAND_SUCCESS;
}else if(!strcmp(input_buffer->buffer,".constants")){
printf("Constants:\n");
print_constants();
return META_COMMAND_SUCCESS;
}else{
return META_COMMAND_UNRECOGNIZED_COMMAND;
}
}
PrepareResult prepare_insert(InputBuffer* input_buffer, Statement* statement){
statement->type = STATEMENT_INSERT;
char* keyword = strtok(input_buffer->buffer, " ");
char* id_string = strtok(NULL, " ");
char* username = strtok(NULL, " ");
char* email = strtok(NULL, " ");
if(id_string==NULL || username==NULL || email==NULL){
return PREPARE_SYNTAX_ERROR;
}
int id = atoi(id_string);
//how to make sure id_string is a number?
if(id<0){
return PREPARE_NEGATIVE_ID;
}
if(strlen(username)>COLUMN_USERNAME_SIZE) return PREPARE_STRING_TOO_LONG;
if(strlen(email)>COLUMN_EMAIL_SIZE) return PREPARE_STRING_TOO_LONG;
statement->row_to_insert.id = id;
strcpy(statement->row_to_insert.username,username);
strcpy(statement->row_to_insert.email,email);
return PREPARE_SUCCESS;
}
//Our "SQL compiler". Now our compiler only understands two words
PrepareResult prepare_statement(InputBuffer* input_buffer,Statement* statement){
if (!strncmp(input_buffer->buffer,"insert",6)){
return prepare_insert(input_buffer, statement);
//scanf when inputting more than it should buffer overflows so we'll first
//break down the string into the three keywords and then check their length
//using strtok
// statement->type = STATEMENT_INSERT;
// int args_assigned = sscanf(
// input_buffer->buffer,"insert %d %s %s",&(statement->row_to_insert.id),
// statement->row_to_insert.username, statement->row_to_insert.email
// );
// if(args_assigned<3){
// return PREPARE_SYNTAX_ERROR;
// }
// return PREPARE_SUCCESS;
}
if (!strcmp(input_buffer->buffer,"select")){
statement->type = STATEMENT_SELECT;
return PREPARE_SUCCESS;
}
return PREPARE_UNRECOGNIZED_STATEMENT;
}
ExecuteResult execute_statement(Statement* statement,Table* table){
if(statement->type == STATEMENT_INSERT){
return execute_insert(statement,table);
}else if(statement->type == STATEMENT_SELECT){
return execute_select(statement,table);
}
}
InputBuffer* new_input_buffer(){
InputBuffer* input_buffer = malloc(sizeof(InputBuffer));
//initiliazing
input_buffer->buffer = NULL;
input_buffer->buffer_length = 0;
input_buffer->input_length = 0;
return input_buffer;
}
Pager* pager_open(const char* filename){
int fd = open(filename,
O_RDWR| //Read/write mode
O_CREAT, //create file if it does not exit
S_IWUSR | //user write permission
S_IRUSR ); //user read permission
if(fd == -1){
printf("Unable to open file\n");
exit(EXIT_FAILURE);
}
//use off_t for file sizes
off_t file_length = lseek(fd,0,SEEK_END);
Pager* pager = malloc(sizeof(Pager));
pager->file_descriptor = fd;
pager->file_length = file_length;
pager->num_pages = (file_length/PAGE_SIZE);
if(file_length % PAGE_SIZE !=0){
printf("%ld %d %ld %ld\n", file_length,PAGE_SIZE,file_length/PAGE_SIZE,file_length%PAGE_SIZE);
printf("Db file is not a whole no. of pages. Corrupt file.\n");
exit(EXIT_FAILURE);
}
for(uint32_t i = 0;i< TABLE_MAX_PAGES; i++){
pager->pages[i] = NULL;
}
return pager;
}
// Table* new_table(){
Table* db_open(const char* filename){
Pager* pager = pager_open(filename);
// uint32_t num_rows = pager->file_length / ROW_SIZE;
Table* table = malloc(sizeof(Table));
// table->num_rows = num_rows; //if new file table->num_rows = 0
table->pager = pager;
table->root_page_num = 0;
if(pager->num_pages==0){
//New file, intiliaze page 0 as leaf node
void* root_node = get_page(pager,0);
initialize_leaf_node(root_node);
set_node_root(root_node, true);
}
return table;
}
void* get_page(Pager* pager, uint32_t page_num){
if(page_num > TABLE_MAX_PAGES){
printf("Tried to fetch page number out of bounds. %d > %d \n",
page_num,TABLE_MAX_PAGES);
exit(EXIT_FAILURE);
}
if(pager->pages[page_num] == NULL){
//Cache miss, Allocate memory and load from file
void* page = malloc(PAGE_SIZE);
uint32_t num_pages = pager->file_length/PAGE_SIZE;
if(pager->file_length%PAGE_SIZE!=0){
num_pages += 1;
}
// if the requested page_num is within the bounds of the file.
if(page_num <= num_pages){
/*set the file offset to the beginning of the desired page (page_num*PAGE_SIZE)*/
lseek(pager->file_descriptor, page_num*PAGE_SIZE, SEEK_SET);
//reads PAGE_SIZE no. of bytes from the file descriptor to the buffer (page)
ssize_t bytes_read = read(pager->file_descriptor, page, PAGE_SIZE);
if(bytes_read == -1){
printf("Error reading file: %d\n", errno);
exit(EXIT_FAILURE);
}
}
pager->pages[page_num] = page;
if(page_num>=pager->num_pages){
pager->num_pages += 1;
}
}
return pager->pages[page_num];
}
void pager_flush(Pager* pager, uint32_t page_num){
if(pager->pages[page_num]==NULL){
printf("Tried to flush null page\n");
exit(EXIT_FAILURE);
}
off_t offset= lseek(pager->file_descriptor, page_num*PAGE_SIZE, SEEK_SET);
if(offset==-1){
printf("Error seeking: %d\n", errno);
exit(EXIT_FAILURE);
}
ssize_t bytes_written =
write(pager->file_descriptor, pager->pages[page_num],PAGE_SIZE);
if(bytes_written == -1){
printf("Error writing: %d\n",errno);
exit(EXIT_FAILURE);
}
// printf("saved\n");
}
void db_close(Table* table){
/*flushes the page cache to disk,
closes the db file,
frees Pager and Table data structures
*/
Pager* pager = table->pager;
// uint32_t num_full_pages = table->num_rows/ROWS_PER_PAGE;
for(uint32_t i = 0; i<pager->num_pages; i++){
if(pager->pages[i] == NULL){
continue;
}
pager_flush(pager, i);
free(pager->pages[i]);
pager->pages[i] = NULL;
}
//Free partial page
// uint32_t num_additional_rows = table->num_rows % ROWS_PER_PAGE;
// if(num_additional_rows > 0){
// //partial page exists
// uint32_t page_num = num_full_pages;
// if(pager->pages[page_num]!=NULL){
// pager_flush(pager,page_num,num_additional_rows*ROW_SIZE);
// free(pager->pages[page_num]);
// pager->pages[page_num] = NULL;
// }
// }
int result = close(pager->file_descriptor);
if(result == -1){
printf("Error closing db file.\n");
exit(EXIT_FAILURE);
}
//Making sure all pages are freed from memory?
for(uint32_t i =0; i<TABLE_MAX_PAGES; i++){
void* page = pager->pages[i];
if(page){
free(page);
pager->pages[i] = NULL;
}
}
free(pager);
free(table);
}
//ssize_t getline(char** lineptr, size_t *n, FILE *stream)
/*lineptr: pointer, if it is NULL, it will be mallocatted by getline
so even if the command fails, you have to free it
here we don't mallocate input_buffer->buffer so it is done by line ptr */
void read_input(InputBuffer* input_buffer){
ssize_t bytes_read =
getline(&(input_buffer->buffer), &(input_buffer->buffer_length),stdin);
if(bytes_read <=0){
printf("Error reading input\n");
exit(EXIT_FAILURE);
}
input_buffer->input_length = bytes_read -1;
input_buffer->buffer[bytes_read-1]= 0;
}
void close_input_buffer(InputBuffer* input_buffer){
free(input_buffer->buffer);
free(input_buffer);
}
int main(int argc, char* argv[]){
// printf("%d\n",ROW_SIZE);
// printf("%d\n",PAGE_SIZE);
// printf("%d",ROWS_PER_PAGE);
InputBuffer* input_buffer =new_input_buffer();
Statement statement;
// Table* table = new_table();
if(argc<2){
printf("Must supply a database filename.\n");
exit(EXIT_FAILURE);
}
char* filename = argv[1];
Table* table = db_open(filename);
// print_constants();
while(true){
print_prompt();
read_input(input_buffer);
//handling meta commands
if(input_buffer->buffer[0] == '.'){
switch(do_meta_command(input_buffer,table)){
case(META_COMMAND_SUCCESS): continue;
case(META_COMMAND_UNRECOGNIZED_COMMAND):
printf("Unrecognized command '%s'\n",input_buffer->buffer);
continue;
}
}
//if not a meta command ==> SQL command
Statement statement;
switch(prepare_statement(input_buffer,&statement)){
case(PREPARE_SUCCESS):
break;
case(PREPARE_UNRECOGNIZED_STATEMENT):
printf("Unrecognized keyword at start of '%s'.\n",
input_buffer->buffer);
//Read input again
continue;
case(PREPARE_NEGATIVE_ID):
printf("ID must be positive. \n");
continue;
case(PREPARE_STRING_TOO_LONG):
printf("String is too long.\n");
continue;
}
switch (execute_statement(&statement,table)){
case (EXECUTE_SUCCESS):
printf("Executed.\n");
break;
case (EXECUTE_TABLE_FULL):
printf("Error: Table full.\n");
break;
case (EXECUTE_DUPLICATE_KEY):
printf("Error: Duplicate key.\n");
break;
}
}
// free_table(table);
// printf("freed\n");
return 0;
}