-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathperturbations_test.py
156 lines (124 loc) · 6.11 KB
/
perturbations_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding=utf-8
#
# Modifications from original work
# 29-03-2021 ([email protected]) : Convert Tensorflow code to PyTorch
#
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Tests for differentiable_programming.perturbations."""
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import numpy.testing as npt
import torch
import torch.nn.functional as F
import perturbations
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def reduce_sign_any(input_tensor, axis=-1):
"""A logical or of the signs of a tensor along an axis.
Args:
input_tensor: Tensor<float> of any shape.
axis: the axis along which we want to compute a logical or of the signs of
the values.
Returns:
A Tensor<float>, which as the same shape as the input tensor, but without the
axis on which we reduced.
"""
boolean_sign = torch.any(
((torch.sign(input_tensor) + 1) / 2.0).type(torch.bool), dim=axis)
return boolean_sign.type(input_tensor.dtype) * 2.0 - 1.0
class PerturbationsTest(parameterized.TestCase):
"""Testing the perturbations module."""
def setUp(self):
super(PerturbationsTest, self).setUp()
torch.manual_seed(0)
@parameterized.parameters([perturbations._GUMBEL, perturbations._NORMAL])
def test_sample_noise_with_gradients(self, noise):
shape = (3, 2, 4)
samples, gradients = perturbations.sample_noise_with_gradients(noise, shape)
self.assertEqual(tuple(samples.shape), shape)
self.assertEqual(tuple(gradients.shape), shape)
def test_sample_noise_with_gradients_raise(self):
with self.assertRaises(ValueError):
_, _ = perturbations.sample_noise_with_gradients('unknown', (3, 2, 4))
@parameterized.parameters([1e-3, 1e-2, 1e-1])
def test_perturbed_reduce_sign_any(self, sigma):
input_tensor = torch.tensor([[-0.3, -1.2, 1.6], [-0.4, -2.4, -1.0]], device=device)
soft_reduce_any = perturbations.perturbed(reduce_sign_any, sigma=sigma)
output_tensor = soft_reduce_any(input_tensor, -1)
npt.assert_almost_equal(output_tensor.cpu().numpy(), np.array([1.0, -1.0]), decimal=2)
def test_perturbed_reduce_sign_any_gradients(self):
# We choose a point where the gradient should be above noise, that is
# to say the distance to 0 along one direction is about sigma.
sigma = 0.1
input_tensor = torch.tensor([[-0.6, -1.2, 0.5 * sigma], [-2 * sigma, -2.4, -1.0]], requires_grad=True, device=device)
soft_reduce_any = perturbations.perturbed(reduce_sign_any, sigma=sigma)
output_tensor = soft_reduce_any(input_tensor)
output_tensor.backward(torch.ones_like(output_tensor).to(device))
gradient = input_tensor.grad
# The two values that could change the soft logical or should be the one
# with real positive impact on the final values.
self.assertGreater(gradient[0, 2], 0.0)
self.assertGreater(gradient[1, 0], 0.0)
# The value that is more on the fence should bring more gradient than any
# other one.
self.assertTrue((gradient.cpu().numpy() <= gradient[0, 2].cpu().numpy()).all())
def test_unbatched_rank_one_raise(self):
with self.assertRaises(ValueError):
input_tensor = torch.tensor([-0.6, -0.5, 0.5], device=device)
dim = len(input_tensor)
n = 10000000
argmax = lambda t: F.one_hot(torch.argmax(t, 1), dim)
soft_argmax = perturbations.perturbed(argmax, sigma=0.5, num_samples=n)
_ = soft_argmax(input_tensor)
def test_perturbed_argmax_gradients_without_minibatch(self):
input_tensor = torch.tensor([-0.6, -0.5, 0.5], requires_grad=True, device=device)
dim = input_tensor.shape[-1]
eps = 1e-2
n = 10000000
argmax = lambda t: F.one_hot(torch.argmax(t, 1), dim).float()
soft_argmax = perturbations.perturbed(
argmax, sigma=0.5, num_samples=n, batched=False)
norm_argmax = lambda t: torch.sum(torch.square(soft_argmax(t)))
w = torch.randn(input_tensor.shape).to(device)
w /= torch.linalg.norm(w)
value = norm_argmax(input_tensor)
value.backward(torch.ones_like(value))
grad = torch.reshape(input_tensor.grad, list(input_tensor.shape))
value_minus = norm_argmax(input_tensor - eps * w)
value_plus = norm_argmax(input_tensor + eps * w)
lhs = torch.sum(w * grad)
rhs = (value_plus - value_minus) * 1./(2*eps)
self.assertLess(torch.abs(lhs - rhs), 0.05)
def test_perturbed_argmax_gradients_with_minibatch(self):
input_tensor = torch.tensor([[-0.6, -0.7, 0.5], [0.9, -0.6, -0.5]], requires_grad=True, device=device)
dim = input_tensor.shape[-1]
eps = 1e-2
n = 10000000
argmax = lambda t: F.one_hot(torch.argmax(t, -1), dim).float()
soft_argmax = perturbations.perturbed(argmax, sigma=2.5, num_samples=n)
norm_argmax = lambda t: torch.sum(torch.square(soft_argmax(t)))
w = torch.randn(input_tensor.shape).to(device)
w /= torch.linalg.norm(w)
value = norm_argmax(input_tensor)
value.backward(torch.ones_like(value))
grad = torch.reshape(input_tensor.grad, list(input_tensor.shape))
value_minus = norm_argmax(input_tensor - eps * w)
value_plus = norm_argmax(input_tensor + eps * w)
lhs = torch.sum(w * grad)
rhs = (value_plus - value_minus) * 1./(2*eps)
self.assertLess(torch.abs(lhs - rhs), 0.05)
if __name__ == '__main__':
absltest.main()