-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathp7 adadelta.py
137 lines (120 loc) · 3.74 KB
/
p7 adadelta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 本代码是一个最简单的线形回归问题,优化函数为adadelta
epsilon = 1e-2
gamma = 0.9
def da(y,y_p,x):
return (y-y_p)*(-x)
def db(y,y_p):
return (y-y_p)*(-1)
def calc_loss(a,b,x,y):
tmp = y - (a * x + b)
tmp = tmp ** 2 # 对矩阵内的每一个元素平方
SSE = sum(tmp) / (2 * len(x))
return SSE
def draw_hill(x,y):
a = np.linspace(-20,20,100)
print(a)
b = np.linspace(-20,20,100)
x = np.array(x)
y = np.array(y)
allSSE = np.zeros(shape=(len(a),len(b)))
for ai in range(0,len(a)):
for bi in range(0,len(b)):
a0 = a[ai]
b0 = b[bi]
SSE = calc_loss(a=a0,b=b0,x=x,y=y)
allSSE[ai][bi] = SSE
a,b = np.meshgrid(a, b)
return [a,b,allSSE]
# 模拟数据
x = [30 ,35,37, 59, 70, 76, 88, 100]
y = [1100, 1423, 1377, 1800, 2304, 2588, 3495, 4839]
# 数据归一化
x_max = max(x)
x_min = min(x)
y_max = max(y)
y_min = min(y)
for i in range(0,len(x)):
x[i] = (x[i] - x_min)/(x_max - x_min)
y[i] = (y[i] - y_min)/(y_max - y_min)
[ha,hb,hallSSE] = draw_hill(x,y)
hallSSE = hallSSE.T# 重要,将所有的losses做一个转置。原因是矩阵是以左上角至右下角顺序排列元素,而绘图是以左下角为原点。
# 初始化a,b值
a = 10.0
b = -20.0
fig = plt.figure(1, figsize=(12, 8))
fig.suptitle(' method: adadelta ε=%.4f, γ=%.2f'%(epsilon,gamma), fontsize=15)
# 绘制图1的曲面
ax = fig.add_subplot(2, 2, 1, projection='3d')
ax.set_top_view()
ax.plot_surface(ha, hb, hallSSE, rstride=2, cstride=2, cmap='rainbow')
# 绘制图2的等高线图
plt.subplot(2,2,2)
ta = np.linspace(-20, 20, 100)
tb = np.linspace(-20, 20, 100)
plt.contourf(ha,hb,hallSSE,15,alpha=0.5,cmap=plt.cm.hot)
C = plt.contour(ha,hb,hallSSE,15,colors='black')
plt.clabel(C,inline=True)
plt.xlabel('a')
plt.ylabel('b')
plt.ion() # iteration on
all_loss = []
all_step = []
last_a = a
last_b = b
n = np.array([0,0])
theta = np.array([0,0]).astype(np.float32) # 每一次a,b迭代的更新值
apple = np.array([0,0]).astype(np.float32)
pear = np.array([0,0]).astype(np.float32)
# 迭代
for step in range(1,201):
loss = 0
all_da = 0
all_db = 0
all_d = np.array([0,0]).astype(np.float32)
for i in range(0,len(x)):
y_p = a*x[i] + b
loss = loss + (y[i] - y_p)*(y[i] - y_p)/2
all_da = all_da + da(y[i],y_p,x[i])
all_db = all_db + db(y[i],y_p)
#loss_ = calc_loss(a = a,b=b,x=np.array(x),y=np.array(y))
all_d = np.array([all_da,all_db])
loss = loss/len(x)
# 绘制图1中的loss点
ax.scatter(a, b, loss, color='black')
# 绘制图2中的loss点
plt.subplot(2,2,2)
plt.scatter(a,b,s=5,color='blue')
plt.plot([last_a,a],[last_b,b],color='aqua')
# 绘制图3中的回归直线
plt.subplot(2, 2, 3)
plt.plot(x, y)
plt.plot(x, y, 'o')
x_ = np.linspace(0, 1, 2)
y_draw = a * x_ + b
plt.plot(x_, y_draw)
# 绘制图4的loss更新曲线
all_loss.append(loss)
all_step.append(step)
plt.subplot(2,2,4)
plt.plot(all_step,all_loss,color='orange')
plt.xlabel("step")
plt.ylabel("loss")
# print('a = %.3f,b = %.3f' % (a,b))
last_a = a
last_b = b
#-- 参数更新
apple = gamma*apple + (1-gamma)*(all_d**2) # apple with all_d of this step
rms_apple = np.sqrt(apple + epsilon)
pear = gamma*pear + (1-gamma)*(theta**2) # pear with theta of last step
rms_pear = np.sqrt(pear + epsilon)
theta = -(rms_pear/rms_apple)*all_d
[a,b] = [a,b] + theta
if step%1 == 0:
print("step: ", step, " loss: ", loss,"rms_pear: ",rms_pear," rms_apple",rms_apple)
plt.show()
plt.pause(0.01)
plt.show()
plt.pause(99999999999)